constant strain rate
Recently Published Documents


TOTAL DOCUMENTS

472
(FIVE YEARS 56)

H-INDEX

34
(FIVE YEARS 3)

Author(s):  
Amir Mahmoud Zanganeh ◽  
Sina Ghaemi Khiavi ◽  
Bagher Mohammad Sadeghi ◽  
Mehdi Divandari

In the current research, the numerical simulations were done on 15 cylindrical lattice specimens under compressive stress at a constant strain rate using Abaqus software. The lattice cylinders have different strut thicknesses of 3, 4, and 5 mm, and with the fillets in the radiuses of 0.3, 0.6, 0.9, and 1.2 mm, respectively. The mechanical properties of the AlSi11Cu2 (Fe) aluminum alloy were used. The Mises stress distribution was evaluated to determine the effect of fillet radius on the lattice structure for the strut thickness of 3 mm. Also, the effective strain distribution of the lattice structure was investigated after different stages of deformation. After comparing the simulation results, it was shown that by applying fillets with a radius of 0.3 mm in lattice cylinders, the maximum energy absorption and maximum force can be achieved at the ultimate tensile strength (UTS) point. Also, the optimal strain can be obtained at the UTS point.


2021 ◽  
Vol 2021 (12) ◽  
pp. 123201
Author(s):  
E A Jagla

Abstract The yielding transition of amorphous materials is studied with a two-dimensional Hamiltonian model that allows both shear and volume deformations. The model is investigated as a function of the relative value of the bulk modulus B with respect to the shear modulus μ. When the ratio B/μ is small enough, the yielding transition becomes discontinuous, yet reversible. If the system is driven at constant strain rate in the coexistence region, a spatially localized shear band is observed while the rest of the system remains blocked. The crucial role of volume fluctuations in the origin of this behavior is clarified in a mean field version of the model.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1351
Author(s):  
Julie Newman ◽  
Vasileios Chatzaras ◽  
Basil Tikoff ◽  
Jan R. Wijbrans ◽  
William M. Lamb ◽  
...  

We present results from a natural deformed shear zone in the Turon de Técouère massif of the French Pyrenees that directly addresses the processes involved in strain localization, a topic that has been investigated for the last 40 years by structural geologists. Paleopiezometry indicates that differential stresses are variable both spatially across the zone, and temporally during exhumation. We have, however, also calculated strain rate, which remains constant despite changes in stress. This result appears to be at odds with recent experimental deformation on monophase (olivine) rocks, which indicate that strain localization occurs dominantly as a result of constant stress. We hypothesize that in the Turon de Técouère massif—and many natural shear zones—strain localization occurs as a result of reactions, which decrease the grain size and promote the activation of grain size sensitive deformation mechanisms. From a tectonics perspective, this study indicates that the deformation rate in a particular plate boundary is relatively uniform. Stress, however, varies to accommodate this deformation. This viewpoint is consistent with deformation at a plate boundary, but it is not the typical way in which we interpret strain localization.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1440
Author(s):  
Svetlana A. Barannikova ◽  
Mikhail V. Nadezhkin

Jerky flow has recently aroused interest as an example of complex spatiotemporal dynamics resulting from the collective behavior of defects in Al- and Mg-based alloys under loading. This paper presents the results of the study of the macroscopic strain localization kinetics in Nickel 200 (99.5 wt % purity). Uniaxial tension of flat samples is monitored at room temperature in the load–unload mode at a constant strain rate and total deformation increment up to 5%. The stress–strain curves reveal jerky flow from the yield point to the formation of the neck. The digital speckle correlation method evidences the movement of localized plastic deformation bands under the conditions of the Portevin–Le Chatelier effect (PLC). It is shown that stress drops during jerky flow in Ni are accompanied by the formation of morphologically simple single PLC bands. It is established that, with an increase in total deformation, the number of PLC bands and their velocity of motion along the sample decrease, while their time period increases. Moreover, an increase in total deformation leads to an increase in the parameters of the force response (i.e., time period and stress drop magnitude). It is found that the criterion of damage for PLC bands as a function of the total strain has a sigmoidal shape.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5056
Author(s):  
Cheng-Hsien Kuo ◽  
Tao-Hsing Chen ◽  
Ting-Yang Zeng

TiAl-based intermetallic alloys are prepared with Cu concentrations of 3–5 at.% (atomic ratio). The mechanical properties and microstructural characteristics of the alloys are investigated under static and dynamic loading conditions using a material testing system (MTS) and split-Hopkinson Pressure Bar (SHPB), respectively. The electrochemical properties of the various alloys are then tested in Ringer’s solution. It is shown that the level of Cu addition significantly affects both the flow stress and the ductility of the samples. For Cu contents of 3 and 4 at.%, respectively, the flow stress and strain rate sensitivity increase at higher strain rates. Furthermore, for a constant strain rate, a Cu content of 4 at.% leads to an increased fracture strain. However, for the sample with the highest Cu addition of 5 at.%, the flow stress and fracture strain both decrease. The X-ray diffraction (XRD) patterns and optical microscopy (OM) images reveal that the lower ductility is due to the formation of a greater quantity of γ phase in the binary TiAl alloy system. Among all the specimens, that with a Cu addition of 4 at.% has the best anti-corrosion performance. Overall, the results indicate that the favourable properties of the TiAlCu4 sample stem mainly from the low γ phase content of the microstructure and the high α2 phase content.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 991
Author(s):  
Junzhou Yang ◽  
Jianjun Wu

An investigation of flow behavior and the deformation mechanism for Ti-6Al-4V alloy during the superplastic deformation process is presented in this paper. Constant strain rate tensile tests were performed at 890–950 °C and strain rates of 10−2, 10−3, and 10−4/s. Then, surface observation by Optical Microscope (OM), Scanning Electron Microscopy (SEM), and Electron Back-scattered Diffraction (EBSD) was applied to obtain the microstructure mechanism. With pole figure maps (PF) for α-phase, obvious texture gradually changed in the main deformation direction. For the titanium alloy, the evolution of texture in deformed samples was attributed to grain rotation (GR). Significant grain rearrangement occurred between grains after deformation. A complete grain rotation accommodated grain boundary sliding (GBS) deformation mechanism is proposed, which can explain texture evolution without grain deformation.


Geosciences ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 296
Author(s):  
Richard H. Groshong

This paper is a personal account of the origin and development of the twinned-calcite strain gauge, its experimental verification, and its relationship to stress analysis. The method allows the calculation of the three-dimensional deviatoric strain tensor based on five or more twin sets. A minimum of about 25 twin sets should provide a reasonably accurate result for the magnitude and orientation of the strain tensor. The opposite-signed strain axis orientation is the most accurately located. Where one strain axis is appreciably different from the other two, that axis is generally within about 10° of the correct value. Experiments confirm a magnitude accuracy of 1% strain over the range of 1–12% axial shortening and that samples with more than 40% negative expected values imply multiple or rotational deformations. If two deformations are at a high angle to one another, the strain calculated from the positive and negative expected values separately provides a good estimate of both deformations. Most stress analysis techniques do not provide useful magnitudes, although most provide a good estimate of the principal strain axis directions. Stress analysis based on the number of twin sets per grain provides a better than order-of-magnitude approximation to the differential stress magnitude in a constant strain rate experiment.


2021 ◽  
Vol 18 (3) ◽  
pp. 137-144
Author(s):  
Dania Bani Hani ◽  
Raed Al Athamneh ◽  
Mohammed Aljarrah ◽  
Sa’d Hamasha

Abstract SAC-based alloys are one of the most common solder materials that are utilized to provide mechanical support and electrical connection between electronic components and the printed circuit board. Enhancing the mechanical properties of solder joints can improve the life of the components. One of the mechanical properties that define the solder joint structure integrity is the shear strength. The main objective of this study is to assess the shear strength behavior of SAC305 solder joints under different aging conditions. Instron 5948 Micromechanical Tester with a customized fixture is used to perform accelerated shear tests on individual solder joints. The shear strength of SAC305 solder joints with organic solderability preservative (OSP) surface finish is investigated at constant strain rate under different aging times (2, 10, 100, and 1,000 h) and different aging temperatures (50, 100, and 150°C). The nonaged solder joints are examined as well for comparison purposes. Analysis of variance (ANOVA) is accomplished to identify the contribution of each parameter on the shear strength. A general empirical model is developed to estimate the shear strength as a function of aging conditions using the Arrhenius term. Microstructure analysis is performed at different aging conditions using scanning electron microscope (SEM). The results revealed a significant reduction in the shear strength when the aging level is increased. An increase in the precipitates coarsening and intermetallic compound (IMC) layer thickness are observed with increased aging time and temperature.


2021 ◽  
Vol 1035 ◽  
pp. 328-333
Author(s):  
Li Wei Zhu ◽  
Zhi Shou Zhu ◽  
Xin Nan Wang

The hot deformation behavior of Ti-Al-Nb-Zr-Mo-Cr titanium alloy has been investigated using a Gleeble-1500D thermal simulation test machine in the temperature range of 855°C~1015°C,at constant strain rate from 0.01 s-1 to 10s-1 and with height reduction of 45%. The flow curves characteristic under different deformation parameters show significant difference. According to the stress-strain curves of the alloy and its stress characteristics, the Arrhenius constitutive equation was obtained. The average activation energy is about 541 kJ/mol in the α+β field, and about 243 kJ/mol in the β field, respectively. Based on the dynamic materials model, the processing map is generated, which shows that the peak efficiency domain appears at the temperature of 874°C~900°C and the strain rate of 0.001 s-1~0.06s-1 with a peak efficiency of 0.58 at about 887°C/0.001s-1.


Sign in / Sign up

Export Citation Format

Share Document