Nonsmooth spatial frictional contact dynamics of multibody systems

Author(s):  
Kun Wang ◽  
Qiang Tian ◽  
Haiyan Hu
Author(s):  
Farnood Gholami ◽  
Mostafa Nasri ◽  
József Kövecses ◽  
Marek Teichmann

One of the major challenges in dynamics of multibody systems is to handle redundant constraints appropriately. The box friction model is one of the existing approaches to formulate the contact and friction phenomenon as a mixed linear complementarity problem (MLCP). In this setting, the contact redundancy can be handled by relaxing the constraints, but such a technique might suffer from certain drawbacks, specially in the case of large number of redundant constraints. Most of the common pivoting algorithms used to solve the resulting mixed complementarity problem might not converge when the relaxation terms are chosen as small as they should be. To overcome the aforementioned shortcoming, we propose a novel approach which takes advantage of the sparse structure of the formulated MLCP. This novel approach reduces the sensitivity of the solution of the problem to the relaxation terms and decreases the number of required pivots to obtain the solution, leading to shorter computational times. Furthermore, as a result of the proposed approach, much smaller relaxation terms can be used while the solution algorithms converge.


Author(s):  
P. Flores ◽  
J. Ambro´sio ◽  
J. C. P. Claro ◽  
H. M. Lankarani

This work deals with a methodology to assess the influence of the spherical clearance joints in spatial multibody systems. The methodology is based on the Cartesian coordinates, being the dynamics of the joint elements modeled as impacting bodies and controlled by contact forces. The impacts and contacts are described by a continuous contact force model that accounts for geometric and mechanical characteristics of the contacting surfaces. The contact force is evaluated as function of the elastic pseudo-penetration between the impacting bodies, coupled with a nonlinear viscous-elastic factor representing the energy dissipation during the impact process. A spatial four bar mechanism is used as an illustrative example and some numerical results are presented, being the efficiency of the developed methodology discussed in the process of their presentation. The results obtained show that the inclusion of clearance joints in the modelization of spatial multibody systems significantly influences the prediction of components’ position and drastically increases the peaks in acceleration and reaction moments at the joints. Moreover, the system’s response clearly tends to be nonperiodic when a clearance joint is included in the simulation.


2014 ◽  
Vol 1 (1) ◽  
pp. 943012
Author(s):  
Changshan Jin ◽  
Mei Jin ◽  
Duc Pham

Sign in / Sign up

Export Citation Format

Share Document