clearance joint
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 29)

H-INDEX

14
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Gang Chen ◽  
Xinyao Xu

Abstract The clearance joint is very important to the nonlinear dynamic characteristics of mechanism. This paper presents a nonlinear dynamic characteristic model of shift manipulator for robot driver based on multiple revolute clearance joints to improve dynamic characteristics. The relative penetration depth and velocity between pin and bushing are obtained by establishing the kinematic model of the shift manipulator with clearance joint. Based on the improved L-N contact force model and the modified Coulomb friction model, the normal contact force and the tangential contact force of clearance joint are analyzed. With full clearance joints, the nonlinear dynamic characteristic model of the shift manipulator for robot driver is established. The nonlinear dynamic characteristic laws of the shift manipulator including the end displacement, velocity, acceleration and active joint driving torque are analyzed by different sizes of clearance joints. And the performance test of the shift manipulator for robot driver is conducted. The results demonstrate that the nonlinear dynamic characteristics are well analyzed and verified through the presented characteristic model with clearance joints.


2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110177
Author(s):  
Jia Yonghao ◽  
Chen Xiulong

For spatial multibody systems, the dynamic equations of multibody systems with compound clearance joints have a high level of nonlinearity. The coupling between different types of clearance joints may lead to abundant dynamic behavior. At present, the dynamic response analysis of the spatial parallel mechanism considering the three-dimensional (3D) compound clearance joint has not been reported. This work proposes a modeling method to investigate the influence of the 3D compound clearance joint on the dynamics characteristics of the spatial parallel mechanism. For this purpose, 3D kinematic models of spherical clearance joint and revolute joint with radial and axial clearances are derived. Contact force is described as normal contact and tangential friction and later introduced into the nonlinear dynamics model, which is established by the Lagrange multiplier technique and Jacobian of constraint matrix. The influences of compound clearance joint and initial misalignment of bearing axes on the system are analyzed. Furthermore, validation of dynamics model is evaluated by ADAMS and Newton–Euler method. This work provides an essential theoretical basis for studying the influences of 3D clearance joints on dynamic responses and nonlinear behavior of parallel mechanisms.


Mechanika ◽  
2021 ◽  
Vol 27 (2) ◽  
pp. 130-138
Author(s):  
Zhengfeng Bai ◽  
Tianxi LIU

Clearances caused by assemblage, manufacturing errors and wear, affect inevitably the dynamic responses of mechanisms such as robot manipulator. In this study, the effects of clearance on a robot manipulator system are investigated numerically. The contact behavior along normal and tangential direction of clearance joint is described by a nonlinear contact force model and a modified Coulomb friction model respectively. Then, the dynamics equations of the robot manipulator system are established considering joint clearance. In order to investigate the effects of clearance on dynamic performances of practical mechanism, a planar robot manipulator system on a spacecraft system with a revolute clearance joint is used as the apply example. Four case studies for various clearance sizes are implemented to investigate and discuss the effects of joint clearance. The simulation results indicate that clearance joints have severe effects on the dynamic performances of mechanism system and the impact in clearance joints represented by contact force models must be considered in dynamics analysis and design of mechanism system. The simulation results in this work can predict the effects of clearance on robot manipulator system preferably and it is the basis of precision analysis, robust control system design of robot manipulator system.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110125
Author(s):  
Xiaofeng Li ◽  
Deng Zhao ◽  
Fuqi Xie ◽  
Shijing Wu ◽  
XiaoYong Li

Joint clearance is unavoidable in the revolute joint of multi-link mechanism. Excessive value of joint clearance generally leads to the noise, vibration, and fatigue failure. In this paper, a multi-link articulated mechanism system with three revolute clearance joints is selected as the study object. At first, its ideal motion equations and dynamic responses without joint clearance are outlined. Then an experimental rig is set up, and the acceleration responses of the mechanism in different scenarios are investigated. Comparative analysis indicates that in the presence of joints clearance, clear periodic transient impacts appear in the acceleration outputs while this mechanism moves to specific positions, and the impacts amplitude increases along with the clearance size and driving speed. Also, certain sequence among three motion states of clearance joint, named free flight, penetration and continuous-contact is observed twice in one circle movement of the mechanism. Besides, the clearance joint at the end of the transmission chain has greater effects on the mechanism system than the other joints. Finally, flexible rubber sleeves are set into the clearance joints, and the obtained experimental results indicate that the undesired transient impact by clearance joints on the mechanical system can be suppressed by flexible sleeves.


2021 ◽  
Author(s):  
Mahdi Bamdad ◽  
Amirhosein Javanfar

Abstract Clearance joint widely occurs in the components of mechanical systems as evidence of manufacturing errors. Since a proper set of parameters in the contact and friction model could lead to a higher precision of clearance analysis, the effect of friction models when surfaces collide with a non-zero tangential velocity is examined. Unlike the crank mechanism, a double rocker four - bar linkage mechanism as a challenging problem in the impact mode is analyzed. An investigation on the dynamic modeling and analysis of double rocker four - bar linkage mechanisms with frictional revolute clearance joints is presented. In the presence of clearance joints, asserting friction force, a novel formulation of the contact model is proposed after exploring the perfect continuous friction models with easy parameterization and analyzing the applicable compliant contact force models. The perfect continuous friction models including stribeck effect, static, dynamic, and viscous friction terms are studied, and four friction models (Ambrosio, Threlfall, Anderson and Brown) are thoroughly compared. Using an appropriate model, nonlinear dynamic behaviour is examined and to profit by Poincare portrait; it is proven that either strange chaos exists in the system response. FFT analysis expresses the friction and restitution coefficient influence the nonlinear dynamics of the mechanism significantly. The main consideration here is to present a friction model for improving continuity and computational cost. This paper comes to efficiency of the brown friction model which is used in the clearance joint for first time. The results clearly reveal that the angular accelerations of the links and the contact forces in the continuous friction models are smoother and bounded.


Author(s):  
Yu Chen ◽  
Jun Feng ◽  
Qiang He ◽  
Yu Wang ◽  
Yu Sun ◽  
...  

Abstract The slider-crank mechanism is used widely in modern industrial equipment whereby the contact-impact of a revolute clearance joint affects the dynamic behavior of mechanical systems. Combining multibody dynamic theory and nonlinear contact theory, the computational methodology for dynamic analysis of the slider-crank mechanism with a clearance joint is proposed. The differential equations of motion are obtained considering the revolute clearance joint between the connecting rod and slider. In the mechanical system, the contact force is evaluated using the continuous force model proposed by Lankarani and Nikravesh, which can describe the contact-impact phenomenon accurately. Then, the experimental study is performed whereby the numerical results are compared with the test data to validate the proposed model. Moreover, the dynamic response analysis is conducted with various driving velocities and clearance sizes, which also explains that the sensitive dependence of a mechanical system on the revolute clearance joint.


2020 ◽  
pp. 136943322097172
Author(s):  
Bo Li ◽  
San-Min Wang ◽  
Charis J Gantes ◽  
U-Xuan Tan

This paper comprehensively deals with the parametric effects of the joint clearance and friction coefficient on the dynamics of planar deployable structures consisting of scissor-like elements (SLEs). The dynamic model for scissor deployable structure is based on a comprehensive consideration of the symmetry and array characteristics of this mechanism and on a Lagrange method, which represents the motion equations. A modified nonlinear contact-force model is employed to evaluate the intrajoint contact force, and the incorporation of the friction effect between the inter-connecting bodies is included in this study. The total impact forces produced in the real mechanical joint are embedded into the dynamics and the differential equations of motion are solved numerically based on a set of initial conditions. The clearance size, angle velocity, and friction coefficient are analyzed and discussed separately. Using Poincaré map, the regular and irregular responses of the deployable mulitibody systems are observed. Next, a control scheme is evaluated to maintain a more stable behavior and continuous contact between the clearance joints. The controlled results are compared with those without control, concluding that some undesired effects caused by the clearance joints can be prevented or reduced, resulting in continuous contact at the clearance joint.


Sign in / Sign up

Export Citation Format

Share Document