clearance joints
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 46)

H-INDEX

21
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Gang Chen ◽  
Xinyao Xu

Abstract The clearance joint is very important to the nonlinear dynamic characteristics of mechanism. This paper presents a nonlinear dynamic characteristic model of shift manipulator for robot driver based on multiple revolute clearance joints to improve dynamic characteristics. The relative penetration depth and velocity between pin and bushing are obtained by establishing the kinematic model of the shift manipulator with clearance joint. Based on the improved L-N contact force model and the modified Coulomb friction model, the normal contact force and the tangential contact force of clearance joint are analyzed. With full clearance joints, the nonlinear dynamic characteristic model of the shift manipulator for robot driver is established. The nonlinear dynamic characteristic laws of the shift manipulator including the end displacement, velocity, acceleration and active joint driving torque are analyzed by different sizes of clearance joints. And the performance test of the shift manipulator for robot driver is conducted. The results demonstrate that the nonlinear dynamic characteristics are well analyzed and verified through the presented characteristic model with clearance joints.


2021 ◽  
Author(s):  
Bo Li ◽  
Min San Wang ◽  
Charis J Gantes ◽  
Xuan U Tan

Abstract The main goal of this work is to develop a comprehensive methodology for predicting wear in planar mechanical systems with multiple clearance joints and investigating the interaction between the joint clearance, driving condition and wear. In the process, an effective contact surface discretization method together with Lagrangian method are used to establish the dynamic equation of the multibody system. Considering the change of the contact surface, an improved nonlinear contact-force model suitable for the complicated contact conditions is utilized to evaluate the intrajoint forces, and the friction effects between the inter-connecting bodies are discussed using LuGre model. Next, the contact forces developed are integrated into the Archard model to compute the wear depth caused by the relative sliding and the geometry of the bearing is updated. Then, a crank slider mechanism with multiple clearance joints is employed to perform numerical simulations in order to demonstrate the efficiency of the dynamic procedures adopted throughout this work. The correctness of the proposed method is verified by comparing with other literature and simulation results. This study is helpful for predicting joint wear of mechanical systems with clearance and optimize the mechanism’s design.


2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110177
Author(s):  
Jia Yonghao ◽  
Chen Xiulong

For spatial multibody systems, the dynamic equations of multibody systems with compound clearance joints have a high level of nonlinearity. The coupling between different types of clearance joints may lead to abundant dynamic behavior. At present, the dynamic response analysis of the spatial parallel mechanism considering the three-dimensional (3D) compound clearance joint has not been reported. This work proposes a modeling method to investigate the influence of the 3D compound clearance joint on the dynamics characteristics of the spatial parallel mechanism. For this purpose, 3D kinematic models of spherical clearance joint and revolute joint with radial and axial clearances are derived. Contact force is described as normal contact and tangential friction and later introduced into the nonlinear dynamics model, which is established by the Lagrange multiplier technique and Jacobian of constraint matrix. The influences of compound clearance joint and initial misalignment of bearing axes on the system are analyzed. Furthermore, validation of dynamics model is evaluated by ADAMS and Newton–Euler method. This work provides an essential theoretical basis for studying the influences of 3D clearance joints on dynamic responses and nonlinear behavior of parallel mechanisms.


Mechanika ◽  
2021 ◽  
Vol 27 (2) ◽  
pp. 130-138
Author(s):  
Zhengfeng Bai ◽  
Tianxi LIU

Clearances caused by assemblage, manufacturing errors and wear, affect inevitably the dynamic responses of mechanisms such as robot manipulator. In this study, the effects of clearance on a robot manipulator system are investigated numerically. The contact behavior along normal and tangential direction of clearance joint is described by a nonlinear contact force model and a modified Coulomb friction model respectively. Then, the dynamics equations of the robot manipulator system are established considering joint clearance. In order to investigate the effects of clearance on dynamic performances of practical mechanism, a planar robot manipulator system on a spacecraft system with a revolute clearance joint is used as the apply example. Four case studies for various clearance sizes are implemented to investigate and discuss the effects of joint clearance. The simulation results indicate that clearance joints have severe effects on the dynamic performances of mechanism system and the impact in clearance joints represented by contact force models must be considered in dynamics analysis and design of mechanism system. The simulation results in this work can predict the effects of clearance on robot manipulator system preferably and it is the basis of precision analysis, robust control system design of robot manipulator system.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110125
Author(s):  
Xiaofeng Li ◽  
Deng Zhao ◽  
Fuqi Xie ◽  
Shijing Wu ◽  
XiaoYong Li

Joint clearance is unavoidable in the revolute joint of multi-link mechanism. Excessive value of joint clearance generally leads to the noise, vibration, and fatigue failure. In this paper, a multi-link articulated mechanism system with three revolute clearance joints is selected as the study object. At first, its ideal motion equations and dynamic responses without joint clearance are outlined. Then an experimental rig is set up, and the acceleration responses of the mechanism in different scenarios are investigated. Comparative analysis indicates that in the presence of joints clearance, clear periodic transient impacts appear in the acceleration outputs while this mechanism moves to specific positions, and the impacts amplitude increases along with the clearance size and driving speed. Also, certain sequence among three motion states of clearance joint, named free flight, penetration and continuous-contact is observed twice in one circle movement of the mechanism. Besides, the clearance joint at the end of the transmission chain has greater effects on the mechanism system than the other joints. Finally, flexible rubber sleeves are set into the clearance joints, and the obtained experimental results indicate that the undesired transient impact by clearance joints on the mechanical system can be suppressed by flexible sleeves.


Sign in / Sign up

Export Citation Format

Share Document