Volume 6: 5th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A, B, and C
Latest Publications


TOTAL DOCUMENTS

268
(FIVE YEARS 0)

H-INDEX

11
(FIVE YEARS 0)

Published By ASMEDC

0791847438

Author(s):  
J. A. Tenreiro Machado ◽  
Isabel S. Jesus ◽  
Alexandra Galhano

Some experimentation with magnets was beginning in the late 19th century. By then reliable batteries had been developed and the electric current was recognized as a stream of charge particles. Maxwell developed a set of equations expressing the basic laws of electricity and magnetism, and demonstrated that these two phenomena are complementary aspects of electromagnetism. He showed that electric and magnetic fields travel through space, in the form of waves, at a constant velocity. Maxwell is generally regarded as the nineteenth century scientist who had the greatest influence on twentieth century physics, making contributions to the fundamental models of nature. Bearing these ideas in mind, in this study we apply the concept of fractional calculus and some aspects of electromagnetism, to the static electric potential, and we develop a new fractional order approximation method to the electrical potential.


Author(s):  
Eqab M. Rabei ◽  
Abdul-Wali Ajlouni ◽  
Humam B. Ghassib

Following our work on the quantization of nonconservative systems using fractional calculus, the canonical quantization of a system of free particles in a dissipative medium is carried out according to the Dirac method. A suitable Schro¨dinger equation is set up and solved for the Lagrangian representing this system. The wave function is plotted and the damping effect manifests itself very clearly. This formalism is then applied to the problem of energy loss of charged particles when passing through matter. The results are plotted and the relation between the energy loss and the range agrees qualitatively with experimental results.


Author(s):  
Masataka Fukunaga ◽  
Nobuyuki Shimizu ◽  
Hiroshi Nasuno

Nonlinear fractional calculus model for the viscoelastic material is examined for oscillation around the off-equilibrium point. The model equation consists of two terms of different order fractional derivatives. The lower order derivative characterizes the slow process, and the higher order derivative characterizes the process of rapid oscillation. The measured difference in the order of the fractional derivative of the material, that the order is higher when the material is rapidly oscillated than when it is slowly compressed, is partly attributed to the difference in the frequency dependence between the two fractional derivatives. However, it is found that there could be possibility for the variable coefficients of the two terms with the rate of change of displacement.


Author(s):  
Timothy J. Burns ◽  
Tony L. Schmitz

The dynamics of a spindle-holder-tool (SHT) system during high-speed machining is sensitive to changes in tool overhang length. A well-known method for predicting the limiting depth of cut for avoidance of tool chatter requires a good estimate of the tool-point frequency response (FRF) of the combined system, which depends upon the tool length. In earlier work, a combined analytical and experimental method has been discussed, that uses receptance coupling substructure analysis (RCSA) for the rapid prediction of the combined spindle-holder-tool FRF. The basic idea of the method is to combine the measured direct displacement vs. force receptance (i.e., frequency response) at the free end of the spindle-holder (SH) system with calculated expressions for the tool receptances based on analytical models. The tool was modeled as an Euler-Bernoulli (EB) beam, the other three spindle-holder receptances were set equal to zero, and the model for the connection with the tool led to a diagonal matrix. The main conclusion of the earlier work was that there was an exponential trend in the dominant connection parameter, which enabled interpolation between tip receptance data for the longest and shortest tools in the combined SHT system. Thus, a considerable savings in time and effort could be realized for the particular SHT system. A question left open in the earlier work was: how general is this observed exponential trend? Here, to explore this question further, an analytical EB model is used for the SH system, so that all four of its end receptances are available, and the tool is again modeled as a free-free EB beam that is connected to the SH by a specified connection matrix, that includes nonzero off-diagonal terms. This serves as the “exact” solution. The approximate solution is once again formed by setting all but one SH receptance equal to zero, and the connection parameters are determined using nonlinear least squares software. Both diagonal and full connection matrices are investigated. The main result is that, for this system, in the case of a diagonal connecting matrix, there is no apparent trend in the dominant connecting spring stiffness with tool overhang length. However, in the full connecting matrix case, a general constant trend is observed, with some interesting exceptions.


Author(s):  
P. Maißer

This paper presents a differential-geometric approach to the multibody system dynamics regarded as a point dynamics in a n-dimensional configuration space Rn. This configuration space becomes a Riemannian space Vn the metric of which is defined by the kinetic energy of the multibody system (MBS). Hence, all concepts and statements of the Riemannian geometry can be used to study the dynamics of MBS. One of the key points is to set up the non-linear Lagrangian motion equations of tree-like MBS as well as of constrained mechanical systems, the perturbed equations of motion, and the motion equations of hybrid MBS in a derivative-free manner. Based on this approach transformation properties can be investigated for application in real-time simulation, control theory, Hamilton mechanics, the construction of first integrals, stability etc. Finally, a general Lyapunov-stable force control law for underactuated systems is given that demonstrates the power of the approach in high-performance sports applications.


Author(s):  
Raoul R. Nigmatullin

Based on the Mori-Zwanzig formalism it becomes possible to suggest a general decoupling procedure, which reduces a wide set of various micromotions distributed over a self-similar structure to a few collective/reduced motions describing the relaxation/exchange behavior of a complex system in the mesoscale region. The frequency dependence of the reduced collective motion contains real and pair of complex-conjugate power-law exponents in the frequency domain and explains naturally the “universal response” (UR) phenomenon discovered by A. Jonscher in a wide class of heterogeneous materials. This strict mathematical result allows in developing a consistent and general theory of dielectric relaxation that can describe wide set of dielectric spectroscopy (DS) data measured in some frequency/temperature range in many heterogeneous materials. Based on this result it becomes possible also to suggest a new set of two-pole elements, which generalizes the conventional RLC-elements and can constitute the basis of new theory of the linear electric circuits.


Author(s):  
Raffaele Di Gregorio ◽  
Alessandro Cammarata ◽  
Rosario Sinatra

The comparison of mechanisms with different topology or with different geometry, but with the same topology, is a necessary operation during the design of a machine sized for a given task. Therefore, tools that evaluate the dynamic performances of a mechanism are welcomed. This paper deals with the dynamic isotropy of 2-dof mechanisms starting from the definition introduced in a previous paper. In particular, starting from the condition that identifies the dynamically isotropic configurations, it shows that, provided some special cases are not considered, 2-dof mechanisms have at most a finite number of isotropic configurations. Moreover, it shows that, provided the dynamically isotropic configurations are excluded, the geometric locus of the configuration space that collects the points associated to configurations with the same dynamic isotropy is constituted by closed curves. This results will allow the classification of 2-dof mechanisms from the dynamic-isotropy point of view, and the definition of some methodologies for the characterization of the dynamic isotropy of these mechanisms. Finally, examples of applications of the obtained results will be given.


Author(s):  
Y. P. Razi ◽  
M. Mojtabi ◽  
K. Maliwan ◽  
M. C. Charrier-Mojtabi ◽  
A. Mojtabi

This paper concerns the thermal stability analysis of porous layer saturated by a binary fluid under the influence of mechanical vibration. The linear stability analysis of this thermal system leads us to study the following damped coupled Mathieu equations: BH¨+B(π2+k2)+1H˙+(π2+k2)−k2k2+π2RaT(1+Rsinω*t*)H=k2k2+π2(NRaT)(1+Rsinω*t*)Fε*BF¨+Bπ2+k2Le+ε*F˙+π2+k2Le−k2k2+π2NRaT(1+Rsinω*t*)F=k2k2+π2RaT(1+Rsinω*t*)H where RaT is thermal Rayleigh number, R is acceleration ratio (bω2/g), Le is the Lewis number, k is the dimensionless wave-number, ε* is normalized porosity and N is the buoyancy ratio (H and F are perturbations of temperature and concentration fields). In the follow up, the non-linear behavior of the problem is studied via a generalization of the Lorenz model (five coupled non-linear differential equations with periodic coefficients). In the presence or absence of gravity, the stability limit for the onset of stationary as well as Hopf bifurcations is determined.


Author(s):  
G. Nakhaie Jazar ◽  
M. Mahinfalah ◽  
M. Rastgaar Aagaah ◽  
N. Mahmoudian

The third stable region of the Mathieu stability chart, surrounded by one π-transition and one 2π-transition curve is investigated. It is known that the solution of Mathieu equation is either periodic or quasi-periodic when its parameters are within stable regions. Periodic responses occur when they are on a “splitting curve”. Splitting curves are within stable regions and are corresponding to coexisting of periodic curves where an instability tongue closes. Distributions of sub and super-harmonics, as well as quasi-periodic solutions are analyzed using power spectral density method.


Author(s):  
Timour M. A. Nusirat ◽  
M. N. Hamdan

This paper is concerned with analysis of dynamic behavior of an Euler-Bernoulli beam resting on an elastic foundation. The beam is assumed to be subjected to a uniformly distributed lateral static load, have an initial quarter-sine shape deflection. At one end, the beam is assumed to be restrained by a pin, while at the other end, the beam is assumed to be restrained by a torsional and a translational linear spring. The beam is modeled by a nonlinear partial differential equation where the nonlinearity enters the governing equation through the beam axial force. In the static case, because of a unique feature of governing equation, the analysis was carried out using the theory of linear differential equations, but takes into account the effect of actual deflection on the induced axial thrust. In the dynamic case, stability analysis of the beam is carried out by calculating the nonlinear frequencies of free vibration of the beam about its static equilibrium configuration. The assumed mode method is used to discretize and find an equivalent nonlinear initial value problem. Then the harmonic balance is used to obtain an approximate solution to the nonlinear oscillator described by the equivalent initial value problem. The analyses of results were carried out for a selected range of values of the system parameters: foundation elastic stiffness, lateral load, and maximum beam edge deflection. In the static case the results are presented as characteristic curves showing the variation of the beam static deflection and associated bending moment distribution with each of the above system parameters. In the dynamic case, the presented characteristic curves show the variation of the nonlinear natural frequency corresponding to the first and the second modes over a range of each of the above system parameters.


Sign in / Sign up

Export Citation Format

Share Document