scholarly journals Synchronization of two different fractional-order chaotic systems with unknown parameters using a robust adaptive nonlinear controller

2016 ◽  
Vol 85 (2) ◽  
pp. 825-838 ◽  
Author(s):  
Mahmoud Maheri ◽  
Norihan Md. Arifin
Author(s):  
Hadi Delavari ◽  
Milad Mohadeszadeh

In this paper, a robust adaptive sliding mode controller is proposed. Under the existence of external disturbances, modified hybrid projective synchronization (MHPS) between two identical and two nonidentical fractional-order complex chaotic systems is achieved. It is shown that the response system could be synchronized with the drive system up to a nondiagonal scaling matrix. An adaptive controller and parameter update laws are investigated based on the Lyapunov stability theorem. The closed-loop stability conditions are derived based on the fractional-order Lyapunov function and Mittag-Leffler function. Finally, numerical simulations are given to verify the theoretical analysis.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Yan Yan

This paper deals with the synchronization of a class of fractional order chaotic systems with unknown parameters and external disturbance. Based on the Lyapunov stability theory, a fractional order sliding mode is constructed and a controller is proposed to realize chaos synchronization. The presented method not only realizes the synchronization of the considered chaotic systems but also enhances the robustness of sliding mode synchronization. Finally, some simulation results demonstrate the effectiveness and robustness of the proposed method.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Liping Chen ◽  
Shanbi Wei ◽  
Yi Chai ◽  
Ranchao Wu

Projective synchronization between two different fractional-order chaotic systems with fully unknown parameters for drive and response systems is investigated. On the basis of the stability theory of fractional-order differential equations, a suitable and effective adaptive control law and a parameter update rule for unknown parameters are designed, such that projective synchronization between the fractional-order chaotic Chen system and the fractional-order chaotic Lü system with unknown parameters is achieved. Theoretical analysis and numerical simulations are presented to demonstrate the validity and feasibility of the proposed method.


2013 ◽  
Vol 850-851 ◽  
pp. 868-871 ◽  
Author(s):  
Li Xin Yang ◽  
Wan Sheng He ◽  
Jin Ping Jia ◽  
Fan Di Zhang

In this paper, chaos synchronization of the modified Sprott E system is investigated. Based on the stability theorem for fractional systems, tracking control approach is used for the fractional-order systems with uncertain parameters. Meanwhile, suitable adaptive synchronization controller and recognizing rules of the uncertain parameters are designed. Numerical simulation results show that the method is easy to implement and reliable for synchronizing the two nonlinear fractional order hyper-chaotic systems.


Sign in / Sign up

Export Citation Format

Share Document