Kinship-based differential evolution algorithm for unconstrained numerical optimization

2019 ◽  
Vol 99 (2) ◽  
pp. 1341-1361 ◽  
Author(s):  
Giovanni Formica ◽  
Franco Milicchio
2013 ◽  
Vol 415 ◽  
pp. 349-352
Author(s):  
Hong Wei Zhao ◽  
Hong Gang Xia

Differential evolution (DE) is a population-based stochastic function minimizer (or maximizer), whose simple yet powerful and straightforward features make it very attractive for numerical optimization. However, DE is easy to trapped into local optima. In this paper, an improved differential evolution algorithm (IDE) proposed to speed the convergence rate of DE and enhance the global search of DE. The IDE employed a new mutation operation and modified crossover operation. The former can rapidly enhance the convergence of the MDE, and the latter can prevent the MDE from being trapped into the local optimum effectively. Besides, we dynamic adjust the scaling factor (F) and the crossover rate (CR), which is aimed at further improving algorithm performance. Based on several benchmark experiment simulations, the IDE has demonstrated stronger convergence and stability than original differential (DE) algorithm and other algorithms (PSO and JADE) that reported in recent literature.


2014 ◽  
Vol 602-605 ◽  
pp. 3585-3588
Author(s):  
Hong Gang Xia ◽  
Qing Zhou Wang

To efficiently enhance the global search and local search of Differential Evolution algorithm ( DE), A modified differential evolution algorithm (MDE) is proposed in this paper. The MDE and the DE are different in two aspects. The first is the MDE Algorithm use a strategy of Pitch adjustment instead of original mutation operation, this can enhance the convergence of the MDE, the second is integrate the opposed-learning operation in the crossover operation to prevent DE from being trapped into local optimum. Four test functions are adopted to make comparison with original DE, the MDE has demonstrated stronger velocity of convergence and precision of optimization than differential DE algorithm and PSO.


2014 ◽  
Vol 989-994 ◽  
pp. 2536-2539
Author(s):  
Hong Gang Xia ◽  
Qing Zhou Wang

In this paper, a modified differential evolution algorithm (MDE) developed to solve unconstrained numerical optimization problems. The MDE algorithm employed random position updating and disturbance operation to replaces the traditional mutation operation. The former can rapidly enhance the convergence of the MDE, and the latter can prevent the MDE from being trapped into the local optimum effectively. Besides, we dynamic adjust the crossover rate (CR), which is aimed at further improving algorithm performance. Based on several benchmark experiment simulations, the MDE has demonstrated stronger convergence and stability than original differential (DE) algorithm and its two improved algorithms (JADE and SaDE) that reported in recent literature.


Sign in / Sign up

Export Citation Format

Share Document