scholarly journals Study on the behavior of weakly nonlinear water waves in the presence of random wind forcing

2019 ◽  
Vol 99 (3) ◽  
pp. 2319-2338 ◽  
Author(s):  
Leo Dostal ◽  
Marten Hollm ◽  
Edwin Kreuzer
1991 ◽  
Vol 229 (-1) ◽  
pp. 135 ◽  
Author(s):  
S. W. Joo ◽  
A. F. Messiter ◽  
W. W. Schultz

Author(s):  
D. H. Peregrine

AbstractEquations governing modulations of weakly nonlinear water waves are described. The modulations are coupled with wave-induced mean flows except in the case of water deeper than the modulation length scale. Equations suitable for water depths of the order the modulation length scale are deduced from those derived by Davey and Stewartson [5] and Dysthe [6]. A number of ases in which these equations reduce to a one dimensional nonlinear Schrödinger (NLS) equation are enumerated.Several analytical solutions of NLS equations are presented, with discussion of some of their implications for describing the propagation of water waves. Some of the solutions have not been presented in detail, or in convenient form before. One is new, a “rational” solution describing an “amplitude peak” which is isolated in space-time. Ma's [13] soli ton is particularly relevant to the recurrence of uniform wave trains in the experiment of Lake et al.[10].In further discussion it is pointed out that although water waves are unstable to three-dimensional disturbances, an effective description of weakly nonlinear two-dimensional waves would be a useful step towards describing ocean wave propagation.


Author(s):  
A. Constantin

For more than two centuries progress in the study of water waves proved to be interdependent with innovative and deep developments in theoretical and experimental directions of investigation. In recent years, considerable progress has been achieved towards the understanding of waves of large amplitude. Within this setting one cannot rely on linear theory as nonlinearity becomes an essential feature. Various analytic methods have been developed and adapted to come to terms with the challenges encountered in settings where approximations (such as those provided by linear or weakly nonlinear theory) are ineffective. Without relying on simpler models, progress becomes contingent upon the discovery of structural properties, the exploitation of which requires a combination of creative ideas and state-of-the-art technical tools. The successful quest for structure often reveals unexpected patterns and confers aesthetic value on some of these studies. The topics covered in this issue are both multi-disciplinary and interdisciplinary: there is a strong interplay between mathematical analysis, numerical computation and experimental/field data, interacting with each other via mutual stimulation and feedback. This theme issue reflects some of the new important developments that were discussed during the programme ‘Nonlinear water waves’ that took place at the Isaac Newton Institute for Mathematical Sciences (Cambridge, UK) from 31st July to 25th August 2017. A cross-section of the experts in the study of water waves who participated in the programme authored the collected papers. These papers illustrate the diversity, intensity and interconnectivity of the current research activity in this area. They offer new insight, present emerging theoretical methodologies and computational approaches, and describe sophisticated experimental results. This article is part of the theme issue ‘Nonlinear water waves’.


1984 ◽  
Vol 141 ◽  
pp. 265-274 ◽  
Author(s):  
Philip L.-F. Liu ◽  
Ting-Kuei Tsay

A model equation is derived for calculating transformation and propagation of Stokes waves. With the assumption that the water depth is slowly varying, the model equation, which is a nonlinear Schrödinger equation with variable coefficients, describes the forward-scattering wavefield. The model equation is used to investigate the wave convergence over a semicircular shoal. Numerical results are compared with experimental data (Whalin 1971). Nonlinear effects, which generate higher-harmonic wave components, are definitely important in the focusing zone. Mean free-surface set-downs over the shoal are also computed.


2003 ◽  
Vol 14 (08) ◽  
pp. 1127-1134 ◽  
Author(s):  
ZHENYA YAN

In this paper, with the symbolic computation, the doubly-periodic solutions of the Davey–Stewartson (DS) system, which describes the modulational instability of uniform train of weakly nonlinear water waves in the two-dimensional space, are investigated in terms of the Weierstrass elliptic function ℘(ξ; g2, g3). In particular, we also give new solitary wave solutions of this system.


Sign in / Sign up

Export Citation Format

Share Document