finite thickness
Recently Published Documents


TOTAL DOCUMENTS

1420
(FIVE YEARS 155)

H-INDEX

53
(FIVE YEARS 5)

2022 ◽  
Vol 12 (2) ◽  
pp. 766
Author(s):  
Xiangyu Sha ◽  
Aizhong Lu ◽  
Hui Cai ◽  
Chonglin Yin

The static problem of a layered isotropic elastic body is a very useful research subject in relation to the analysis and design of foundation works. Due to the complexity of the problem, there is no analytical solution to the problem so far. This study provides an efficient analytical approach to accurately calculate the displacement and stress fields of the soil. The constraints of bedrock on soil, different soil layer thickness and the shear stress of the foundation on soil were all taken into account in the analysis. In this study, each layer is regarded as an isotropic elastomer with infinite width, and the layers are in complete contact. By using conformal mapping, each layer is mapped to a unit circle, and the two complex potential functions are expanded into Taylor series with unknown coefficients. These unknown coefficients are obtained by satisfying boundary conditions and continuity conditions. The boundary and continuity conditions were verified in this paper. As a validation step, we compared the analytical results for the settlement with the results of the ANSYS numerical simulations and found good agreement. Parametric analyses were also carried out to investigate the influence of different distribution forms of base pressure on surface settlement, and the effects of layered properties on the surface settlement and stress field.


2021 ◽  
Author(s):  
Brodie Hoyer ◽  
Rong Long ◽  
Mark E. Rentschler

Abstract Rolling contact experimentation is a viable and instructive method for exploring the adhesive contact between surfaces. When applied to soft elastomeric or engineered surfaces, the results of such experiments can provide insights relevant to medical robotics, soft gripping applications, and reversible dry adhesives for bandages or wearable devices. We have designed and built a tribometric device to capture normal and tangential forces between a rolling indenter and substrate correlated with contact area imaging. The device was validated using an experimental setup involving a rigid, nominally smooth acrylic cylinder rolling against a flat polydimethylsiloxame (PDMS) substrate, the results of which matched favorably with accepted contact mechanics theories. The second test involved an indenter with a rigid core and thin (3 mm) smooth shell of a highly deformable, viscoelastic polyvinyl chloride (PVC) rolling on the same PDMS substrate. This test deviated significantly from analytical predictions, highlighting the effects of finite-thickness effects, viscoelasticity, and interfacial slip. This device will facilitate experimental investigations of the rolling contact mechanics between textured surfaces and soft tissue-like materials, which is an important fundamental problem in medical robotics.


2021 ◽  
Author(s):  
S. Kiran ◽  
◽  
M. Sankar ◽  
S. Sivasankaran ◽  
◽  
...  

Buoyancy-driven convection in an annular space between two upright concentric cylinders having finite thickness of inner/outer cylinder is an essential physical structure exposing several practical applications. The current article reports the coupled conduction-convection transfer in an upright porous annular space and the buoyant convective stream and thermal transfer, associated thermal transport rates has been numerically investigated. In this analysis, the inner cylinder has fixed width and maintained at uniform high temperature, while the outer cylinder wall is preserved at uniform lower temperature. However, the lower & upper boundaries of annular region are presumed to be sealed and insulated. The Brinkman-extended Darcy formulation is implemented for modeling the stream in the porous medium. An implicit finite difference technique based on SLOR & ADI methods is adopted to resolve the governing equations. From the numerical predictions, it has been detected that the conductivity ratio & wall thickness has crucial role in controlling thermal transport through the annular space. The present work will have applications in electronic equipment, electric machinery, solar collectors, and lubrication systems.


Author(s):  
Alexander E. Kraus ◽  
◽  
Evgeny I. Kraus ◽  
Ivan I. Shabalin

Numerical simulation of the processes of high-speed loading of homogeneous and heteroge- neous targets by single projectiles, as well as by a group of projectiles with the same parameters in mass and momentum, has been carried out. Based on a comparison of the numerical simulation results for loading targets with different sets of projectiles, it is found that a projectile in the form of a ring knocks out the maximum hole in the target in terms of geometric dimensions, while a set of seven small disks removes the maximum mass from the target. The ring impact forms a continuous spall plate, which outruns the cloud of fragments of the destroyed material. Adding more than 5% of ceramics to the aluminum target volume does not allow the projectiles to penetrate through


Author(s):  
Alexander A. Skrynnikov ◽  
Anastasia I. Fedoseeva ◽  
Natalia B. Morozova ◽  
Alexey I. Dontsov ◽  
Aleksander V. Vvedenskii ◽  
...  

The purpose of the article is to reveal the role of the thickness of the layer of the lead-palladium alloy deposited on a copper-palladium membrane in the processes of cathodic injection and the anodic extraction of atomic hydrogen.The objects of the study were ~ 4 μm thick copper-palladium film electrodes obtained by magnetron sputtering of a target with a composition of 56 at. % Cu and 44 at. % Pd. The studies were carried out by cyclic voltammetry and double step anodic-cathodic chronoamperometry in a deaerated 0.1 М H2SO4 aqueous solution. The calculation of the parameters of hydrogen permeability for samples of finite thickness was carried out by mathematical modelling.Cathodic injection and anodic extraction of atomic hydrogen were used to study the effect of the surface modification of the foil membrane of a Pd-Cu solid solution on the diffusion and kinetic parameters of hydrogen permeability. It was found that even a small addition of Pd-Pb (a 2 nm thick film) leads to a decrease in the concentration of atomic hydrogen and the diffusion coefficient in the foil. With an increase in the thickness of the coating there is an increase in the diffusion parameters of the hydrogen injection and extraction processes. However, the hydrogen permeability does not reach the level of the unmodified alloy. The main kinetic parameter, the hydrogen extraction rate constant, changes nonlinearly with an increase in the thickness of the coating.


2021 ◽  
Vol 26 (4) ◽  
pp. 344-349
Author(s):  
A. V. Gribovsky ◽  

Purpose: Investigation of the electrodynamic properties of a Fabry-Perot metaresonator formed by two parallel perfectly conducting, two-dimensionally periodic, two-element screens of finite thickness with rectangular holes. The resonator is excited by a plane linearly polarized electromagnetic wave. The basic cell of each of the screens used as the metaresonator mirrors contains two lengths of rectangular waveguides of different transverse sections. Design/methodology/approach: An operator method for solving the 3D problems of electromagnetic wave diffraction by multielement two-dimensionally periodic structures is used in the study. The computation algorithm uses the partial domain technique and the method of generalized scattering matrices. Findings: As follows from the results of the numerical modeling made, the magnitude of the plane wave reflected from the metaresonator turns to zero at fixed frequencies lying below the cutoff frequencies for the rectangular waveguide sections embedded in the resonator mirrors. The effect of the total electromagnetic wave transmission through the metaresonator at the first lower frequency is characterized by a strong localization of the electromagnetic field in the resonator volume. The reason is excitation of the metaresonator by the exponentially descending field penetrating inside the resonator through the evanescent holes at the resonance frequency. The second low-frequency resonance of the total electromagnetic wave transmission through the metaresonator is associated with the trapped-mode resonance, which is observed in multielement two-dimensionally periodic structures. This case is characterized by a strong localization of the electromagnetic field from both sides near the metaresonator mirror surfaces. Conclusions: The unique electrodynamic properties of the metaresonator can find application in the devices for measuring the electrophysical parameters of composite materials with high losses. The effect of strong localization of the electromagnetic field both in the resonator volume and near the mirror surfaces can be used for monitoring the gaseous substances in crowded places. Key words: two-dimensionally periodic screen; rectangular waveguide; Fabry-Perot metaresonator; reflection factor; evanescent waveguide; trapped-mode resonance


2021 ◽  
Author(s):  
Srikumar Sandeep ◽  
Albin Gasiewski ◽  
Shao Ying Huang ◽  
Andrew F Peterson

<div>This work validates cylindrical IE-GSTC by applying it to physical metasurfaces, i.e. metasurfaces defined by material properties and dimensions rather than by susceptibility tensor components. Previously reported IE-GSTC which was formulated for zero thickness GSTC discontinuity is extended to handle finite thickness of physical metasurfaces. A simple analytical approach is used to extract the bianisotropic susceptibility tensor of concentric, multilayered, magneto-dielectric shell. Plane wave scattering by a physical metasurface constructed of four segments of multilayered, magneto-dielectric metasurface scatterers is used as an example problem to validate cylindrical IEGSTC. A second example considers an opening on the cylindrical metasurface, confirming IE-GSTC can handle metasurfaces with openings. Good agreement is obtained between IE-GSTC results and full wave simulation results for both cases.</div>


2021 ◽  
Author(s):  
Srikumar Sandeep ◽  
Albin Gasiewski ◽  
Andrew F Peterson

<div>This work validates cylindrical IE-GSTC by applying it to physical metasurfaces, i.e. metasurfaces defined by material properties and dimensions rather than by susceptibility tensor components. Previously reported IE-GSTC which was formulated for zero thickness GSTC discontinuity is extended to handle finite thickness of physical metasurfaces. A simple analytical approach is used to extract the bianisotropic susceptibility tensor of concentric, multilayered, magneto-dielectric shell. Plane wave scattering by a physical metasurface constructed of four segments of multilayered, magneto-dielectric metasurface scatterers is used as an example problem to validate cylindrical IEGSTC. A second example considers an opening on the cylindrical metasurface, confirming IE-GSTC can handle metasurfaces with openings. Good agreement is obtained between IE-GSTC results and full wave simulation results for both cases.</div>


Sign in / Sign up

Export Citation Format

Share Document