M-lump, high-order breather solutions and interaction dynamics of a generalized $$(2 + 1)$$-dimensional nonlinear wave equation

2020 ◽  
Vol 100 (3) ◽  
pp. 2753-2765 ◽  
Author(s):  
Zhonglong Zhao ◽  
Lingchao He
2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Weiguo Rui

By using the integral bifurcation method together with factoring technique, we study a water wave model, a high-order nonlinear wave equation of KdV type under some newly solvable conditions. Based on our previous research works, some exact traveling wave solutions such as broken-soliton solutions, periodic wave solutions of blow-up type, smooth solitary wave solutions, and nonsmooth peakon solutions within more extensive parameter ranges are obtained. In particular, a series of smooth solitary wave solutions and nonsmooth peakon solutions are obtained. In order to show the properties of these exact solutions visually, we plot the graphs of some representative traveling wave solutions.


2010 ◽  
Vol 43 (3) ◽  
Author(s):  
Le Thi Phuong Ngoc ◽  
Le Xuan Truong ◽  
Nguyen Thanh Long

AbstractIn this paper we consider the following nonlinear wave equation


2021 ◽  
Vol 62 (3) ◽  
pp. 031512
Author(s):  
Adel M. Al-Mahdi ◽  
Mohammad M. Al-Gharabli ◽  
Mohammad Kafini ◽  
Shadi Al-Omari

Sign in / Sign up

Export Citation Format

Share Document