Finite-time tracking control with velocity constraints for the stochastic rehabilitative training walker systems considering different rehabilitee masses

Author(s):  
Ping Sun ◽  
Shuoyu Wang ◽  
Rui Shan
2021 ◽  
Author(s):  
Ping Sun ◽  
Shuoyu Wang ◽  
Rui Shan

Abstract This study discusses a finite-time tracking controller for a rehabilitative training walker that imposes velocity constraints. The walker was described using a stochastic model through which the rehabilitee mass can randomly change, and a velocity constraint method was proposed to control the velocity input to every omniwheel based on a model predictive algorithm. This approach is novel in that the velocity constraint information obtained from the kinematics model was used to design the tracking controller based on the stochastic dynamic model, thus successfully constraining the actual velocity of walker as per the stochastic system. The nonlinear tracking controller was built for the stochastic rehabilitative walker to make the system’s finite time stable. Also, simulation and experiment were performed, and results confirmed that the proposed tracking control method with velocity constraints is very effective, so it may enable various rehabilitees to train safely.


Author(s):  
Qijia Yao

Space manipulator is considered as one of the most promising technologies for future space activities owing to its important role in various on-orbit serving missions. In this study, a robust finite-time tracking control method is proposed for the rapid and accurate trajectory tracking control of an attitude-controlled free-flying space manipulator in the presence of parametric uncertainties and external disturbances. First, a baseline finite-time tracking controller is designed to track the desired position of the space manipulator based on the homogeneous method. Then, a finite-time disturbance observer is designed to accurately estimate the lumped uncertainties. Finally, a robust finite-time tracking controller is developed by integrating the baseline finite-time tracking controller with the finite-time disturbance observer. Rigorous theoretical analysis for the global finite-time stability of the whole closed-loop system is provided. The proposed robust finite-time tracking controller has a relatively simple structure and can guarantee the position and velocity tracking errors converge to zero in finite time even subject to lumped uncertainties. To the best of the authors’ knowledge, there are really limited existing controllers can achieve such excellent performance under the same conditions. Numerical simulations illustrate the effectiveness and superiority of the proposed control method.


Sign in / Sign up

Export Citation Format

Share Document