quadrotor aircraft
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 31)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 11 (24) ◽  
pp. 11583
Author(s):  
Qi Zhang ◽  
Yaoxing Wei ◽  
Xiao Li

In this paper, Active Disturbance Rejection Control (ADRC) is utilized in the attitude control of a quadrotor aircraft to address the problem of attitude destabilization in flight control caused by parameter uncertainties and external disturbances. Considering the difficulty of optimizing the parameter of ADRC, a fractional-order fuzzy particle swarm optimization (FOFPSO) algorithm is proposed to optimize the parameters of ADRC for quadrotor aircraft. Simultaneously, the simulation experiment is designed, which compares with the optimized performance of traditional particle swarm optimization (PSO), fuzzy article swarm optimization (FPSO) and adaptive genetic algorithm-particle swarm optimization (AGA-PSO). In addition, the turbulent wind field model is established to verify the disturbance rejection performance of the controller. Finally, the designed controller is deployed to the actual hardware platform by using the model-based design method. The results show that the controller has a small overshoot and stronger disturbance rejection ability after the parameters are optimized by the proposed algorithm.


2021 ◽  
Vol 116 ◽  
pp. 104930
Author(s):  
Sheikh Izzal Azid ◽  
Krishneel Kumar ◽  
Maurizio Cirrincione ◽  
Adriano Fagiolini

2021 ◽  
pp. 027836492110333
Author(s):  
Gilhyun Ryou ◽  
Ezra Tal ◽  
Sertac Karaman

We consider the problem of generating a time-optimal quadrotor trajectory for highly maneuverable vehicles, such as quadrotor aircraft. The problem is challenging because the optimal trajectory is located on the boundary of the set of dynamically feasible trajectories. This boundary is hard to model as it involves limitations of the entire system, including complex aerodynamic and electromechanical phenomena, in agile high-speed flight. In this work, we propose a multi-fidelity Bayesian optimization framework that models the feasibility constraints based on analytical approximation, numerical simulation, and real-world flight experiments. By combining evaluations at different fidelities, trajectory time is optimized while the number of costly flight experiments is kept to a minimum. The algorithm is thoroughly evaluated for the trajectory generation problem in two different scenarios: (1) connecting predetermined waypoints; (2) planning in obstacle-rich environments. For each scenario, we conduct both simulation and real-world flight experiments at speeds up to 11 m/s. Resulting trajectories were found to be significantly faster than those obtained through minimum-snap trajectory planning.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yao Lei ◽  
Yiyong Huang ◽  
Hengda Wang

Wind disturbance could render thrust and power variation or even causing roll which is difficult to maintain a steady flight in gust especially when the horizontal or vertical wind is involved. In this paper, the horizontal wind and vertical wind are presented to study the influence of wind disturbance on aerodynamic characteristics of the quadrotor aircraft in hovering by experiments and numerical simulations. First, the simplified aerodynamic model with the wind disturbance was analyzed in detail. Also, the low-speed wind tunnel tests were performed to obtain the thrust and power variation of the quadrotor aircraft with rotor spacing ratio s = 1.1 -1.8 in both horizontal and vertical winds of 0-5 m/s with the rotational speed ranging from 1500 to 2300 rpm. Finally, the simulations are performed by utilizing the Computational Fluid Dynamics (CFD) software ANSYS to study the flow field distribution of quadrotor with the influence of the wind disturbance. The comparison between experimental results and simulation results shows that the quadrotor achieves better aerodynamic performance with larger thrust and smaller power consumption at rotor spacing ratio s = 1.8 . Additionally, the quadrotor can effectively resist the horizontal wind disturbance, which will bring larger power loading for the quadrotor, especially at 2.5 m/s. However, the vortices near blade-tip move upwards and deform with the influence of vertical wind, resulting in the reduction of thrust and aerodynamic performance of the quadrotor.


Author(s):  
Zhongqi (Henry) Jia ◽  
Seongkyu Lee

This paper investigates the acoustics of a one-passenger and a six-passenger quadrotor urban air mobility (UAM) aircraft in level flight based on a high-fidelity computational fluid dynamics (CFD) approach. The CFD simulations are carried out using the HPCMP CREATETM-AV multidisciplinary rotorcraft analysis and simulation tool Helios. The acoustic simulations are performed using the acoustic prediction tool PSU-WOPWOP. A total of three CFD models are simulated: a one-passenger isolated rotor configuration, a one-passenger full configuration with a fuselage, and a six-passenger isolated rotor configuration. The noise comparison between the one-passenger isolated rotor case and the full configuration case shows that the vehicle fuselage increases the A-weighted sound pressure level (SPL) up to 5 dB. The acoustic comparison between the one-passenger and the six-passenger isolated rotor configuration shows that the maximum overall SPL difference is up to 14 dB. Furthermore, it is shown that the noise of the six-passenger configuration is approximately 11 dB lower than that of a similar-sized conventional helicopter in an overhead scenario. The community noise impact of UAM aircraft is also assessed and compared to various background noise levels. The results show that the one-passenger quadrotor noise can be fully masked by freeway noise at an altitude greater than or equal to 1000 ft, while the six-passenger quadrotor noise can only be partially masked by freeway noise even at an altitude of 1000 ft.


Sign in / Sign up

Export Citation Format

Share Document