space manipulator
Recently Published Documents


TOTAL DOCUMENTS

435
(FIVE YEARS 96)

H-INDEX

21
(FIVE YEARS 5)

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhiwei Wu ◽  
Yongting Chen ◽  
Wenfu Xu

In order to meet the requirements of the space environment for the lightweight and load capacity of the manipulator, this paper designs a lightweight space manipulator with a weight of 9.23 kg and a load of 2 kg. It adopts the EtherCAT communication protocol and has the characteristics of high load-to-weight ratio. In order to achieve constant force tracking under the condition of unknown environmental parameters, an integral adaptive admittance control method is proposed. The control law is expressed as a third-order linear system equation, the operating environment is equivalent to a spring model, and the control error transfer function is derived. The control performance under the step response is further analyzed. The simulation results show that the proposed integral adaptive admittance control method has better performance than the traditional method. It has no steady-state error, overcomes the problems caused by nonlinear discrete compensation, and can facilitate analysis in the frequency domain, realize parameter optimization, and improve calculation accuracy.


Robotica ◽  
2021 ◽  
pp. 1-23
Author(s):  
Limin Xie ◽  
Xiaoyan Yu ◽  
Li Chen

Abstract The flexibility of the free-floating flexible space manipulator system’s link and joint may affect the control accuracy and cause vibrations. We studied the dynamics modeling, joint trajectory tracking control, and vibration suppressing problem of free-floating flexible-link and flexible-joints space manipulator system with external interference and uncertain parameter. The system’s dynamic equations are established using linear momentum conservation, angular momentum conservation, assumed mode method, and Lagrange equation. Then, the system’s singular perturbation model is established, and a hybrid control is presented. For the slow subsystem, a robust fuzzy sliding mode control is proposed to realize the joint desired trajectory tracking. For the fast subsystem, a speed difference feedback control and a linear-quadratic optimal control are designed to suppress the vibration caused by the flexible joints and the flexible link separately. The simulation comparison experiments under different conditions are taken. The simulate results demonstrate the proposed hybrid control’s validity.


Author(s):  
Yidi Fan ◽  
Wuxing Jing ◽  
Changsheng Gao ◽  
Franco Bernelli-Zazzera

2021 ◽  
Vol 8 ◽  
Author(s):  
Evangelos Papadopoulos ◽  
Farhad Aghili ◽  
Ou Ma ◽  
Roberto Lampariello

Space exploration and exploitation depend on the development of on-orbit robotic capabilities for tasks such as servicing of satellites, removing of orbital debris, or construction and maintenance of orbital assets. Manipulation and capture of objects on-orbit are key enablers for these capabilities. This survey addresses fundamental aspects of manipulation and capture, such as the dynamics of space manipulator systems (SMS), i.e., satellites equipped with manipulators, the contact dynamics between manipulator grippers/payloads and targets, and the methods for identifying properties of SMSs and their targets. Also, it presents recent work of sensing pose and system states, of motion planning for capturing a target, and of feedback control methods for SMS during motion or interaction tasks. Finally, the paper reviews major ground testing testbeds for capture operations, and several notable missions and technologies developed for capture of targets on-orbit.


Author(s):  
Yuming Huang ◽  
Weidong Chen ◽  
Minqiang Shao

The problem of modeling and controlling of a free-floating space manipulator with flexures in both links and joints is addressed in this study. A mathematical model of the system is developed by combining Lagrange’s equations and momentum conservation. The finite element method is introduced to discretize multi-links with complex cross-sections. In order to reduce the dimensions and maintain the precision of a rigid-flexible coupled system, an iterated improved reduction system method is adopted. Then, a novel composite control scheme for the reduced system is presented that uses the concept of integral manifolds and singular perturbation theory. Finally, an augmented computed torque controller is applied to the under-actuated slow subsystem to realize trajectory tracking in joint space, while a linear-quadratic controller is designed to damp out the vibration of joints and links. Numerical simulation results verified that the proposed hybrid controller can successfully suppress vibration and track trajectory at the same time.


Sign in / Sign up

Export Citation Format

Share Document