On some efficient derivative-free iterative methods with memory for solving systems of nonlinear equations

2015 ◽  
Vol 71 (2) ◽  
pp. 457-474 ◽  
Author(s):  
Miodrag S. Petković ◽  
Janak Raj Sharma
2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
J. P. Jaiswal

It is attempted to present two derivative-free Steffensen-type methods with memory for solving nonlinear equations. By making use of a suitable self-accelerator parameter in the existing optimal fourth- and eighth-order without memory methods, the order of convergence has been increased without any extra function evaluation. Therefore, its efficiency index is also increased, which is the main contribution of this paper. The self-accelerator parameters are estimated using Newton’s interpolation. To show applicability of the proposed methods, some numerical illustrations are presented.


Mathematics ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 604 ◽  
Author(s):  
Janak Raj Sharma ◽  
Sunil Kumar ◽  
Clemente Cesarano

We propose a derivative free one-point method with memory of order 1.84 for solving nonlinear equations. The formula requires only one function evaluation and, therefore, the efficiency index is also 1.84. The methodology is carried out by approximating the derivative in Newton’s iteration using a rational linear function. Unlike the existing methods of a similar nature, the scheme of the new method is easy to remember and can also be implemented for systems of nonlinear equations. The applicability of the method is demonstrated on some practical as well as academic problems of a scalar and multi-dimensional nature. In addition, to check the efficacy of the new technique, a comparison of its performance with the existing techniques of the same order is also provided.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1069 ◽  
Author(s):  
Alicia Cordero ◽  
Javier G. Maimó ◽  
Juan R. Torregrosa ◽  
María P. Vassileva

Iterative methods for solving nonlinear equations are said to have memory when the calculation of the next iterate requires the use of more than one previous iteration. Methods with memory usually have a very stable behavior in the sense of the wideness of the set of convergent initial estimations. With the right choice of parameters, iterative methods without memory can increase their order of convergence significantly, becoming schemes with memory. In this work, starting from a simple method without memory, we increase its order of convergence without adding new functional evaluations by approximating the accelerating parameter with Newton interpolation polynomials of degree one and two. Using this technique in the multidimensional case, we extend the proposed method to systems of nonlinear equations. Numerical tests are presented to verify the theoretical results and a study of the dynamics of the method is applied to different problems to show its stability.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Tahereh Eftekhari

Based on iterative methods without memory of eighth-order convergence proposed by Thukral (2012), some iterative methods with memory and high efficiency index are presented. We show that the order of convergence is increased without any additional function evaluations. Numerical comparisons are made to show the performance of the presented methods.


2015 ◽  
Vol 2015 ◽  
pp. 1-5
Author(s):  
M. Sharifi ◽  
S. Karimi Vanani ◽  
F. Khaksar Haghani ◽  
M. Arab ◽  
S. Shateyi

The aim of this paper is to construct a method with memory according to King’s family of methods without memory for nonlinear equations. It is proved that the proposed method possesses higherR-order of convergence using the same number of functional evaluations as King’s family. Numerical experiments are given to illustrate the performance of the constructed scheme.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Alicia Cordero ◽  
Moin-ud-Din Junjua ◽  
Juan R. Torregrosa ◽  
Nusrat Yasmin ◽  
Fiza Zafar

We construct a family of derivative-free optimal iterative methods without memory to approximate a simple zero of a nonlinear function. Error analysis demonstrates that the without-memory class has eighth-order convergence and is extendable to with-memory class. The extension of new family to the with-memory one is also presented which attains the convergence order 15.5156 and a very high efficiency index 15.51561/4≈1.9847. Some particular schemes of the with-memory family are also described. Numerical examples and some dynamical aspects of the new schemes are given to support theoretical results.


2018 ◽  
Vol 41 (17) ◽  
pp. 7263-7282 ◽  
Author(s):  
Cory L. Howk ◽  
José L. Hueso ◽  
Eulalia Martínez ◽  
Carles Teruel

Sign in / Sign up

Export Citation Format

Share Document