scholarly journals On Some Iterative Methods with Memory and High Efficiency Index for Solving Nonlinear Equations

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Tahereh Eftekhari

Based on iterative methods without memory of eighth-order convergence proposed by Thukral (2012), some iterative methods with memory and high efficiency index are presented. We show that the order of convergence is increased without any additional function evaluations. Numerical comparisons are made to show the performance of the presented methods.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
J. P. Jaiswal

It is attempted to present two derivative-free Steffensen-type methods with memory for solving nonlinear equations. By making use of a suitable self-accelerator parameter in the existing optimal fourth- and eighth-order without memory methods, the order of convergence has been increased without any extra function evaluation. Therefore, its efficiency index is also increased, which is the main contribution of this paper. The self-accelerator parameters are estimated using Newton’s interpolation. To show applicability of the proposed methods, some numerical illustrations are presented.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Alicia Cordero ◽  
Moin-ud-Din Junjua ◽  
Juan R. Torregrosa ◽  
Nusrat Yasmin ◽  
Fiza Zafar

We construct a family of derivative-free optimal iterative methods without memory to approximate a simple zero of a nonlinear function. Error analysis demonstrates that the without-memory class has eighth-order convergence and is extendable to with-memory class. The extension of new family to the with-memory one is also presented which attains the convergence order 15.5156 and a very high efficiency index 15.51561/4≈1.9847. Some particular schemes of the with-memory family are also described. Numerical examples and some dynamical aspects of the new schemes are given to support theoretical results.


2011 ◽  
Vol 5 (1) ◽  
pp. 93-109 ◽  
Author(s):  
M. Heydari ◽  
S.M. Hosseini ◽  
G.B. Loghmani

In this paper, two new families of eighth-order iterative methods for solving nonlinear equations is presented. These methods are developed by combining a class of optimal two-point methods and a modified Newton?s method in the third step. Per iteration the presented methods require three evaluations of the function and one evaluation of its first derivative and therefore have the efficiency index equal to 1:682. Kung and Traub conjectured that a multipoint iteration without memory based on n evaluations could achieve optimal convergence order 2n?1. Thus the new families of eighth-order methods agrees with the conjecture of Kung-Traub for the case n = 4. Numerical comparisons are made with several other existing methods to show the performance of the presented methods.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Fiza Zafar ◽  
Gulshan Bibi

We present a family of fourteenth-order convergent iterative methods for solving nonlinear equations involving a specific step which when combined with any two-step iterative method raises the convergence order by n+10, if n is the order of convergence of the two-step iterative method. This new class include four evaluations of function and one evaluation of the first derivative per iteration. Therefore, the efficiency index of this family is 141/5 =1.695218203. Several numerical examples are given to show that the new methods of this family are comparable with the existing methods.


2014 ◽  
Vol 11 (05) ◽  
pp. 1350078 ◽  
Author(s):  
XIAOFENG WANG ◽  
TIE ZHANG

In this paper, we present some three-point Newton-type iterative methods without memory for solving nonlinear equations by using undetermined coefficients method. The order of convergence of the new methods without memory is eight requiring the evaluations of three functions and one first-order derivative in per full iteration. Hence, the new methods are optimal according to Kung and Traubs conjecture. Based on the presented methods without memory, we present two families of Newton-type iterative methods with memory. Further accelerations of convergence speed are obtained by using a self-accelerating parameter. This self-accelerating parameter is calculated by the Hermite interpolating polynomial and is applied to improve the order of convergence of the Newton-type method. The corresponding R-order of convergence is increased from 8 to 9, [Formula: see text] and 10. The increase of convergence order is attained without any additional calculations so that the two families of the methods with memory possess a very high computational efficiency. Numerical examples are demonstrated to confirm theoretical results.


2012 ◽  
Vol 2012 ◽  
pp. 1-15
Author(s):  
Alicia Cordero ◽  
Juan R. Torregrosa ◽  
María P. Vassileva

A new set of predictor-corrector iterative methods with increasing order of convergence is proposed in order to estimate the solution of nonlinear systems. Our aim is to achieve high order of convergence with few Jacobian and/or functional evaluations. Moreover, we pay special attention to the number of linear systems to be solved in the process, with different matrices of coefficients. On the other hand, by applying the pseudocomposition technique on each proposed scheme we get to increase their order of convergence, obtaining new efficient high-order methods. We use the classical efficiency index to compare the obtained procedures and make some numerical test, that allow us to confirm the theoretical results.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Mohammed Barrada ◽  
Mariya Ouaissa ◽  
Yassine Rhazali ◽  
Mariyam Ouaissa

In this paper, we present a new family of methods for finding simple roots of nonlinear equations. The convergence analysis shows that the order of convergence of all these methods is three. The originality of this family lies in the fact that these sequences are defined by an explicit expression which depends on a parameter p where p is a nonnegative integer. A first study on the global convergence of these methods is performed. The power of this family is illustrated analytically by justifying that, under certain conditions, the method convergence’s speed increases with the parameter p. This family’s efficiency is tested on a number of numerical examples. It is observed that our new methods take less number of iterations than many other third-order methods. In comparison with the methods of the sixth and eighth order, the new ones behave similarly in the examples considered.


Sign in / Sign up

Export Citation Format

Share Document