scholarly journals Iterative Methods with Memory for Solving Systems of Nonlinear Equations Using a Second Order Approximation

Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1069 ◽  
Author(s):  
Alicia Cordero ◽  
Javier G. Maimó ◽  
Juan R. Torregrosa ◽  
María P. Vassileva

Iterative methods for solving nonlinear equations are said to have memory when the calculation of the next iterate requires the use of more than one previous iteration. Methods with memory usually have a very stable behavior in the sense of the wideness of the set of convergent initial estimations. With the right choice of parameters, iterative methods without memory can increase their order of convergence significantly, becoming schemes with memory. In this work, starting from a simple method without memory, we increase its order of convergence without adding new functional evaluations by approximating the accelerating parameter with Newton interpolation polynomials of degree one and two. Using this technique in the multidimensional case, we extend the proposed method to systems of nonlinear equations. Numerical tests are presented to verify the theoretical results and a study of the dynamics of the method is applied to different problems to show its stability.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Tahereh Eftekhari

Based on iterative methods without memory of eighth-order convergence proposed by Thukral (2012), some iterative methods with memory and high efficiency index are presented. We show that the order of convergence is increased without any additional function evaluations. Numerical comparisons are made to show the performance of the presented methods.



2014 ◽  
Vol 11 (05) ◽  
pp. 1350078 ◽  
Author(s):  
XIAOFENG WANG ◽  
TIE ZHANG

In this paper, we present some three-point Newton-type iterative methods without memory for solving nonlinear equations by using undetermined coefficients method. The order of convergence of the new methods without memory is eight requiring the evaluations of three functions and one first-order derivative in per full iteration. Hence, the new methods are optimal according to Kung and Traubs conjecture. Based on the presented methods without memory, we present two families of Newton-type iterative methods with memory. Further accelerations of convergence speed are obtained by using a self-accelerating parameter. This self-accelerating parameter is calculated by the Hermite interpolating polynomial and is applied to improve the order of convergence of the Newton-type method. The corresponding R-order of convergence is increased from 8 to 9, [Formula: see text] and 10. The increase of convergence order is attained without any additional calculations so that the two families of the methods with memory possess a very high computational efficiency. Numerical examples are demonstrated to confirm theoretical results.





2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
J. P. Jaiswal

It is attempted to present two derivative-free Steffensen-type methods with memory for solving nonlinear equations. By making use of a suitable self-accelerator parameter in the existing optimal fourth- and eighth-order without memory methods, the order of convergence has been increased without any extra function evaluation. Therefore, its efficiency index is also increased, which is the main contribution of this paper. The self-accelerator parameters are estimated using Newton’s interpolation. To show applicability of the proposed methods, some numerical illustrations are presented.



2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
F. Soleymani ◽  
M. Sharifi ◽  
S. Shateyi ◽  
F. Khaksar Haghani

A class of iterative methods without restriction on the computation of Fréchet derivatives including multisteps for solving systems of nonlinear equations is presented. By considering a frozen Jacobian, we provide a class ofm-step methods with order of convergencem+1. A new method named as Steffensen-Schulz scheme is also contributed. Numerical tests and comparisons with the existing methods are included.



2015 ◽  
Vol 2015 ◽  
pp. 1-5
Author(s):  
M. Sharifi ◽  
S. Karimi Vanani ◽  
F. Khaksar Haghani ◽  
M. Arab ◽  
S. Shateyi

The aim of this paper is to construct a method with memory according to King’s family of methods without memory for nonlinear equations. It is proved that the proposed method possesses higherR-order of convergence using the same number of functional evaluations as King’s family. Numerical experiments are given to illustrate the performance of the constructed scheme.



Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 274
Author(s):  
Francisco I. Chicharro ◽  
Alicia Cordero ◽  
Neus Garrido ◽  
Juan R. Torregrosa

In this work, two Traub-type methods with memory are introduced using accelerating parameters. To obtain schemes with memory, after the inclusion of these parameters in Traub’s method, they have been designed using linear approximations or the Newton’s interpolation polynomials. In both cases, the parameters use information from the current and the previous iterations, so they define a method with memory. Moreover, they achieve higher order of convergence than Traub’s scheme without any additional functional evaluations. The real dynamical analysis verifies that the proposed methods with memory not only converge faster, but they are also more stable than the original scheme. The methods selected by means of this analysis can be applied for solving nonlinear problems with a wider set of initial estimations than their original partners. This fact also involves a lower number of iterations in the process.



2018 ◽  
Vol 24 (1) ◽  
pp. 3
Author(s):  
Himani Arora ◽  
Juan Torregrosa ◽  
Alicia Cordero

In this study, an iterative scheme of sixth order of convergence for solving systems of nonlinear equations is presented. The scheme is composed of three steps, of which the first two steps are that of third order Potra-Pták method and last is weighted-Newton step. Furthermore, we generalize our work to derive a family of multi-step iterative methods with order of convergence 3 r + 6 , r = 0 , 1 , 2 , … . The sixth order method is the special case of this multi-step scheme for r = 0 . The family gives a four-step ninth order method for r = 1 . As much higher order methods are not used in practice, so we study sixth and ninth order methods in detail. Numerical examples are included to confirm theoretical results and to compare the methods with some existing ones. Different numerical tests, containing academical functions and systems resulting from the discretization of boundary problems, are introduced to show the efficiency and reliability of the proposed methods.



Sign in / Sign up

Export Citation Format

Share Document