scholarly journals Tensor theta norms and low rank recovery

Author(s):  
Holger Rauhut ◽  
Željka Stojanac

AbstractWe study extensions of compressive sensing and low rank matrix recovery to the recovery of tensors of low rank from incomplete linear information. While the reconstruction of low rank matrices via nuclear norm minimization is rather well-understand by now, almost no theory is available so far for the extension to higher order tensors due to various theoretical and computational difficulties arising for tensor decompositions. In fact, nuclear norm minimization for matrix recovery is a tractable convex relaxation approach, but the extension of the nuclear norm to tensors is in general NP-hard to compute. In this article, we introduce convex relaxations of the tensor nuclear norm which are computable in polynomial time via semidefinite programming. Our approach is based on theta bodies, a concept from real computational algebraic geometry which is similar to the one of the better known Lasserre relaxations. We introduce polynomial ideals which are generated by the second-order minors corresponding to different matricizations of the tensor (where the tensor entries are treated as variables) such that the nuclear norm ball is the convex hull of the algebraic variety of the ideal. The theta body of order k for such an ideal generates a new norm which we call the θk-norm. We show that in the matrix case, these norms reduce to the standard nuclear norm. For tensors of order three or higher however, we indeed obtain new norms. The sequence of the corresponding unit-θk-norm balls converges asymptotically to the unit tensor nuclear norm ball. By providing the Gröbner basis for the ideals, we explicitly give semidefinite programs for the computation of the θk-norm and for the minimization of the θk-norm under an affine constraint. Finally, numerical experiments for order-three tensor recovery via θ1-norm minimization suggest that our approach successfully reconstructs tensors of low rank from incomplete linear (random) measurements.

2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Yilun Wang ◽  
Xinhua Su

Recovering a large matrix from limited measurements is a challenging task arising in many real applications, such as image inpainting, compressive sensing, and medical imaging, and these kinds of problems are mostly formulated as low-rank matrix approximation problems. Due to the rank operator being nonconvex and discontinuous, most of the recent theoretical studies use the nuclear norm as a convex relaxation and the low-rank matrix recovery problem is solved through minimization of the nuclear norm regularized problem. However, a major limitation of nuclear norm minimization is that all the singular values are simultaneously minimized and the rank may not be well approximated (Hu et al., 2013). Correspondingly, in this paper, we propose a new multistage algorithm, which makes use of the concept of Truncated Nuclear Norm Regularization (TNNR) proposed by Hu et al., 2013, and iterative support detection (ISD) proposed by Wang and Yin, 2010, to overcome the above limitation. Besides matrix completion problems considered by Hu et al., 2013, the proposed method can be also extended to the general low-rank matrix recovery problems. Extensive experiments well validate the superiority of our new algorithms over other state-of-the-art methods.


2013 ◽  
Vol 718-720 ◽  
pp. 2308-2313
Author(s):  
Lu Liu ◽  
Wei Huang ◽  
Di Rong Chen

Minimizing the nuclear norm is recently considered as the convex relaxation of the rank minimization problem and arises in many applications as Netflix challenge. A closest nonconvex relaxation - Schatten norm minimization has been proposed to replace the NP hard rank minimization. In this paper, an algorithm based on Majorization Minimization has be proposed to solve Schatten norm minimization. The numerical experiments show that Schatten norm with recovers low rank matrix from fewer measurements than nuclear norm minimization. The numerical results also indicate that our algorithm give a more accurate reconstruction


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 134943-134953
Author(s):  
Yaru Su ◽  
Xiaohui Wu ◽  
Wenxi Liu

Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 437
Author(s):  
Yasmeen Nadhirah Ahmad Najib ◽  
Hanita Daud ◽  
Azrina Abd Aziz

Wireless Sensor Networks (WSN) are of great current interest in the proliferation of technologies. Since the location of the sensors is one of the most interesting issues in WSN, the process of node localization is crucial for any WSN-based applications. Subsequently, WSN’s node estimation deals with a low-rank matrix which gives rise to the application of the Nuclear Norm Minimization (NNM) method. This paper will focus on the localization of 2-dimensional WSN with objects (obstacles). Recent studies introduce Nuclear Norm Minimization (NNM) for node estimation instead of formulating the rank minimization problem. Common way to tackle this problem is by implementing the Semidefinite Programming (SDP). However, SDP can only handle matrices with a size of less than 100 × 100. Therefore, we introduce the method of Singular Value Thresholding (SVT) which is an iterative algorithm to solve the NNM problem that produces a sequence of matrices { X k , Y k } and executes a soft-thresholding operation on the singular value of the matrix Y k . This algorithm is a user-friendly algorithm which produces a low computational cost with low storage capacity required to give the lowest-rank minimum nuclear norm solution.


Sign in / Sign up

Export Citation Format

Share Document