singular value thresholding
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 15)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Yangyang Ge ◽  
Zhimin Wang ◽  
Wen Zheng ◽  
Yu Zhang ◽  
Xiangmin Yu ◽  
...  

Abstract Quantum singular value thresholding (QSVT) algorithm, as a core module of many mathematical models, seeks the singular values of a sparse and low rank matrix exceeding a threshold and their associated singular vectors. The existing all-qubit QSVT algorithm demands lots of ancillary qubits, remaining a huge challenge for realization on near-term intermediate-scale quantum computers. In this paper, we propose a hybrid QSVT (HQSVT) algorithm utilizing both discrete variables (DVs) and continuous variables (CVs). In our algorithm, raw data vectors are encoded into a qubit system and the following data processing is fulfilled by hybrid quantum operations. Our algorithm requires O[log(MN)] qubits with O(1) qumodes and totally performs O(1) operations, which significantly reduces the space and runtime consumption.


Author(s):  
Robert Beinert ◽  
Kristian Bredies

AbstractWe propose and study a class of novel algorithms that aim at solving bilinear and quadratic inverse problems. Using a convex relaxation based on tensorial lifting, and applying first-order proximal algorithms, these problems could be solved numerically by singular value thresholding methods. However, a direct realization of these algorithms for, e.g., image recovery problems is often impracticable, since computations have to be performed on the tensor-product space, whose dimension is usually tremendous. To overcome this limitation, we derive tensor-free versions of common singular value thresholding methods by exploiting low-rank representations and incorporating an augmented Lanczos process. Using a novel reweighting technique, we further improve the convergence behavior and rank evolution of the iterative algorithms. Applying the method to the two-dimensional masked Fourier phase retrieval problem, we obtain an efficient recovery method. Moreover, the tensor-free algorithms are flexible enough to incorporate a priori smoothness constraints that greatly improve the recovery results.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Yong-Hong Duan ◽  
Rui-Ping Wen ◽  
Yun Xiao

The singular value thresholding (SVT) algorithm plays an important role in the well-known matrix reconstruction problem, and it has many applications in computer vision and recommendation systems. In this paper, an SVT with diagonal-update (D-SVT) algorithm was put forward, which allows the algorithm to make use of simple arithmetic operation and keep the computational cost of each iteration low. The low-rank matrix would be reconstructed well. The convergence of the new algorithm was discussed in detail. Finally, the numerical experiments show the effectiveness of the new algorithm for low-rank matrix completion.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 437
Author(s):  
Yasmeen Nadhirah Ahmad Najib ◽  
Hanita Daud ◽  
Azrina Abd Aziz

Wireless Sensor Networks (WSN) are of great current interest in the proliferation of technologies. Since the location of the sensors is one of the most interesting issues in WSN, the process of node localization is crucial for any WSN-based applications. Subsequently, WSN’s node estimation deals with a low-rank matrix which gives rise to the application of the Nuclear Norm Minimization (NNM) method. This paper will focus on the localization of 2-dimensional WSN with objects (obstacles). Recent studies introduce Nuclear Norm Minimization (NNM) for node estimation instead of formulating the rank minimization problem. Common way to tackle this problem is by implementing the Semidefinite Programming (SDP). However, SDP can only handle matrices with a size of less than 100 × 100. Therefore, we introduce the method of Singular Value Thresholding (SVT) which is an iterative algorithm to solve the NNM problem that produces a sequence of matrices { X k , Y k } and executes a soft-thresholding operation on the singular value of the matrix Y k . This algorithm is a user-friendly algorithm which produces a low computational cost with low storage capacity required to give the lowest-rank minimum nuclear norm solution.


Sign in / Sign up

Export Citation Format

Share Document