computational algebraic geometry
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 9)

H-INDEX

10
(FIVE YEARS 1)

Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1964
Author(s):  
Zoltán Kovács ◽  
Tomas Recio ◽  
Luis F. Tabera ◽  
M. Pilar Vélez

We report, through different examples, the current development in GeoGebra, a widespread Dynamic Geometry software, of geometric automated reasoning tools by means of computational algebraic geometry algorithms. Then we introduce and analyze the case of the degeneracy conditions that so often arise in the automated deduction in geometry context, proposing two different ways for dealing with them. One is working with the saturation of the hypotheses ideal with respect to the ring of geometrically independent variables, as a way to globally handle the statement over all non-degenerate components. The second is considering the reformulation of the given hypotheses ideal—considering the independent variables as invertible parameters—and developing and exploiting the specific properties of this zero-dimensional case to analyze individually the truth of the statement over the different non-degenerate components.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 666
Author(s):  
Raúl M. Falcón

With the particular interest of being implemented in cryptography, the recognition and analysis of image patterns based on Latin squares has recently arisen as an efficient new approach for classifying partial Latin squares into isomorphism classes. This paper shows how the use of a Computer Algebra System (CAS) becomes necessary to delve into this aspect. Thus, the recognition and analysis of image patterns based on these combinatorial structures benefits from the use of computational algebraic geometry to determine whether two given partial Latin squares describe the same affine algebraic set. This paper delves into this topic by focusing on the use of a CAS to characterize when two partial Latin squares are either partial transpose or partial isotopic.


Author(s):  
Holger Rauhut ◽  
Željka Stojanac

AbstractWe study extensions of compressive sensing and low rank matrix recovery to the recovery of tensors of low rank from incomplete linear information. While the reconstruction of low rank matrices via nuclear norm minimization is rather well-understand by now, almost no theory is available so far for the extension to higher order tensors due to various theoretical and computational difficulties arising for tensor decompositions. In fact, nuclear norm minimization for matrix recovery is a tractable convex relaxation approach, but the extension of the nuclear norm to tensors is in general NP-hard to compute. In this article, we introduce convex relaxations of the tensor nuclear norm which are computable in polynomial time via semidefinite programming. Our approach is based on theta bodies, a concept from real computational algebraic geometry which is similar to the one of the better known Lasserre relaxations. We introduce polynomial ideals which are generated by the second-order minors corresponding to different matricizations of the tensor (where the tensor entries are treated as variables) such that the nuclear norm ball is the convex hull of the algebraic variety of the ideal. The theta body of order k for such an ideal generates a new norm which we call the θk-norm. We show that in the matrix case, these norms reduce to the standard nuclear norm. For tensors of order three or higher however, we indeed obtain new norms. The sequence of the corresponding unit-θk-norm balls converges asymptotically to the unit tensor nuclear norm ball. By providing the Gröbner basis for the ideals, we explicitly give semidefinite programs for the computation of the θk-norm and for the minimization of the θk-norm under an affine constraint. Finally, numerical experiments for order-three tensor recovery via θ1-norm minimization suggest that our approach successfully reconstructs tensors of low rank from incomplete linear (random) measurements.


2020 ◽  
Vol 2020 (20) ◽  
pp. 6699-6712
Author(s):  
Jose Israel Rodriguez ◽  
Botong Wang

Abstract We give a numerical algorithm computing Euler obstruction functions using maximum likelihood degrees. The maximum likelihood degree is a well-studied property of a variety in algebraic statistics and computational algebraic geometry. In this article we use this degree to give a new way to compute Euler obstruction functions. We define the maximum likelihood obstruction function and show how it coincides with the Euler obstruction function. With this insight, we are able to bring new tools of computational algebraic geometry to study Euler obstruction functions.


Author(s):  
Ichio Kikuchi ◽  
Akihito Kikuchi

A new framework in quantum chemistry has been proposed recently (``An approach to first principles electronic structure calculation by symbolic-numeric computation'' by A. Kikuchi). It is based on the modern technique of computational algebraic geometry, viz. the symbolic computation of polynomial systems. Although this framework belongs to molecular orbital theory, it fully adopts the symbolic method. The analytic integrals in the secular equations are approximated by the polynomials. The indeterminate variables of polynomials represent the wave-functions and other parameters for the optimization, such as atomic positions and contraction coefficients of atomic orbitals. Then the symbolic computation digests and decomposes the polynomials into a tame form of the set of equations, to which numerical computations are easily applied. The key technique is Gr\"obner basis theory, by which one can investigate the electronic structure by unraveling the entangled relations of the involved variables. In this article, at first, we demonstrate the featured result of this new theory. Next, we expound the mathematical basics concerning computational algebraic geometry, which are necessitated in our study. We will see how highly abstract ideas of polynomial algebra would be applied to the solution of the definite problems in quantum mechanics. We solve simple problems in ``quantum chemistry in algebraic variety'' by means of algebraic approach. Finally, we review several topics related to polynomial computation, whereby we shall have an outlook for the future direction of the research.


2019 ◽  
Author(s):  
Ichio Kikuchi ◽  
Akihito Kikuchi

A new framework in quantum chemistry has been proposed recently (``An approach to first principles electronic structure calculation by symbolic-numeric computation'' by A. Kikuchi). It is based on the modern technique of computational algebraic geometry, viz. the symbolic computation of polynomial systems. Although this framework belongs to molecular orbital theory, it fully adopts the symbolic method. The analytic integrals in the secular equations are approximated by the polynomials. The indeterminate variables of polynomials represent the wave-functions and other parameters for the optimization, such as atomic positions and contraction coefficients of atomic orbitals. Then the symbolic computation digests and decomposes the polynomials into a tame form of the set of equations, to which numerical computations are easily applied. The key technique is Gr\"obner basis theory, by which one can investigate the electronic structure by unraveling the entangled relations of the involved variables. In this article, at first, we demonstrate the featured result of this new theory. Next, we expound the mathematical basics concerning computational algebraic geometry, which are necessitated in our study. We will see how highly abstract ideas of polynomial algebra would be applied to the solution of the definite problems in quantum mechanics. We solve simple problems in ``quantum chemistry in algebraic variety'' by means of algebraic approach. Finally, we review several topics related to polynomial computation, whereby we shall have an outlook for the future direction of the research.


2019 ◽  
Vol 29 (02) ◽  
pp. 1950015 ◽  
Author(s):  
Majid Gazor ◽  
Mahsa Kazemi

Singular parametric systems usually experience bifurcations when their parameters slightly vary around certain critical values, that is, surprising changes occur in their dynamics. The bifurcation analysis is important due to their applications in real world problems. Here, we provide a brief review of the mathematical concepts in the extension of our developed Maple library, Singularity, for the study of [Formula: see text]-equivariant local bifurcations. We explain how the process of this analysis is involved with algebraic objects and tools from computational algebraic geometry. Our procedures for computing normal forms, universal unfoldings, local transition varieties and persistent bifurcation diagram classifications are presented. Finally, we consider several Chua circuit type systems to demonstrate the applicability of our Maple library. We show how Singularity can be used for local equilibrium bifurcation analysis of such systems and their possible small perturbations. A brief user interface of [Formula: see text]-equivariant extension of Singularity is also presented.


Sign in / Sign up

Export Citation Format

Share Document