Auto-Bäcklund transformations and solitary wave solutions for the nonlinear evolution equation

2017 ◽  
Vol 50 (1) ◽  
Author(s):  
Melike Kaplan ◽  
Mehmet Naci Ozer
2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
Xifang Cao

We first give a Bäcklund transformation from the KdV equation to a new nonlinear evolution equation. We then derive two Bäcklund transformations with two pseudopotentials, one of which is from the KdV equation to the new equation and the other from the new equation to itself. As applications, by applying our Bäcklund transformations to known solutions, we construct some novel solutions to the new equation.


2015 ◽  
Vol 70 (6) ◽  
pp. 437-443 ◽  
Author(s):  
Ying-hui Tian ◽  
Zheng-de Dai

AbstractA three-soliton limit method (TSLM) for seeking rogue wave solutions to nonlinear evolution equation (NEE) is proposed. The (2+1)-dimensional Ito equation is used as an example to illustrate the effectiveness of the method. As a result, two rogue waves and a family of new multi-wave solutions are obtained. The result shows that rogue wave can be obtained not only from extreme form of breather solitary wave but also from extreme form of double-breather solitary wave. This is a new and interesting discovery.


2019 ◽  
Vol 25 (2) ◽  
pp. 211-217 ◽  
Author(s):  
Ben Muatjetjeja ◽  
Abdullahi Rashid Adem ◽  
Sivenathi Oscar Mbusi

Abstract Kudryashov and Sinelshchikov proposed a nonlinear evolution equation that models the pressure waves in a mixture of liquid and gas bubbles by taking into account the viscosity of the liquid and the heat transfer. Conservation laws and exact solutions are computed for this underlying equation. In the analysis of this particular equation, two approaches are employed, namely, the multiplier method and Kudryashov method.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Kamruzzaman Khan ◽  
M. Ali Akbar ◽  
Norhashidah Hj. Mohd. Ali

The modified simple equation method is significant for finding the exact traveling wave solutions of nonlinear evolution equations (NLEEs) in mathematical physics. In this paper, we bring in the modified simple equation (MSE) method for solving NLEEs via the Generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony (GZK-BBM) equation and the right-handed noncommutative Burgers' (nc-Burgers) equations and achieve the exact solutions involving parameters. When the parameters are taken as special values, the solitary wave solutions are originated from the traveling wave solutions. It is established that the MSE method offers a further influential mathematical tool for constructing the exact solutions of NLEEs in mathematical physics.


Sign in / Sign up

Export Citation Format

Share Document