scholarly journals Characterization of Banach valued BMO functions and UMD Banach spaces by using Bessel convolutions

Positivity ◽  
2012 ◽  
Vol 17 (3) ◽  
pp. 535-587
Author(s):  
Jorge J. Betancor ◽  
Alejandro J. Castro ◽  
Lourdes Rodríguez-Mesa
2011 ◽  
Vol 7 (4) ◽  
pp. 1019-1048 ◽  
Author(s):  
Jorge J. Betancor ◽  
Alejandro J. Castro ◽  
Jezabel Curbelo ◽  
Lourdes Rodríguez-Mesa

2003 ◽  
Vol 74 (3) ◽  
pp. 351-378 ◽  
Author(s):  
Christian Le Merdy

AbstractLet X be a Banach space with the analytic UMD property, and let A and B be two commuting sectorial operators on X which admit bounded H∞ functional calculi with respect to angles θ1 and θ2 satisfying θ1 + θ2 > π. It was proved by Kalton and Weis that in this case, A + B is closed. The first result of this paper is that under the same conditions, A + B actually admits a bounded H∞ functional calculus. Our second result is that given a Banach space X and a number 1 ≦ p < ∞, the derivation operator on the vector valued Hardy space Hp (R; X) admits a bounded H∞ functional calculus if and only if X has the analytic UMD property. This is an ‘analytic’ version of the well-known characterization of UMD by the boundedness of the H∞ functional calculus of the derivation operator on vector valued Lp-spaces Lp (R; X) for 1 < p < ∞ (Dore-Venni, Hieber-Prüss, Prüss).


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 116
Author(s):  
Qi Liu ◽  
Yongjin Li

In this paper, we will introduce a new geometric constant LYJ(λ,μ,X) based on an equivalent characterization of inner product space, which was proposed by Moslehian and Rassias. We first discuss some equivalent forms of the proposed constant. Next, a characterization of uniformly non-square is given. Moreover, some sufficient conditions which imply weak normal structure are presented. Finally, we obtain some relationship between the other well-known geometric constants and LYJ(λ,μ,X). Also, this new coefficient is computed for X being concrete space.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1827
Author(s):  
Pablo Manuel Berná ◽  
Diego Mondéjar

In 2003, S. J. Dilworth, N. J. Kalton, D. Kutzarova and V. N. Temlyakov introduced the notion of almost greedy (respectively partially greedy) bases. These bases were characterized in terms of quasi-greediness and democracy (respectively conservativeness). In this paper, we show a new functional characterization of these type of bases in general Banach spaces following the spirit of the characterization of greediness proved in 2017 by P. M. Berná and Ó. Blasco.


Author(s):  
J. A. Conejero ◽  
F. Martínez-Giménez ◽  
A. Peris ◽  
F. Rodenas

AbstractWe provide a complete characterization of the possible sets of periods for Devaney chaotic linear operators on Hilbert spaces. As a consequence, we also derive this characterization for linearizable maps on Banach spaces.


2007 ◽  
Vol 35 (4) ◽  
pp. 1438-1478 ◽  
Author(s):  
J. M. A. M. van Neerven ◽  
M. C. Veraar ◽  
L. Weis

Sign in / Sign up

Export Citation Format

Share Document