scholarly journals Correction to: A sequential update algorithm for computing the stationary distribution vector in upper block-Hessenberg Markov chains

2019 ◽  
Vol 92 (1-2) ◽  
pp. 201-202
Author(s):  
Hiroyuki Masuyama
2020 ◽  
Vol 52 (4) ◽  
pp. 1249-1283
Author(s):  
Masatoshi Kimura ◽  
Tetsuya Takine

AbstractThis paper considers ergodic, continuous-time Markov chains $\{X(t)\}_{t \in (\!-\infty,\infty)}$ on $\mathbb{Z}^+=\{0,1,\ldots\}$ . For an arbitrarily fixed $N \in \mathbb{Z}^+$ , we study the conditional stationary distribution $\boldsymbol{\pi}(N)$ given the Markov chain being in $\{0,1,\ldots,N\}$ . We first characterize $\boldsymbol{\pi}(N)$ via systems of linear inequalities and identify simplices that contain $\boldsymbol{\pi}(N)$ , by examining the $(N+1) \times (N+1)$ northwest corner block of the infinitesimal generator $\textbf{\textit{Q}}$ and the subset of the first $N+1$ states whose members are directly reachable from at least one state in $\{N+1,N+2,\ldots\}$ . These results are closely related to the augmented truncation approximation (ATA), and we provide some practical implications for the ATA. Next we consider an extension of the above results, using the $(K+1) \times (K+1)$ ( $K > N$ ) northwest corner block of $\textbf{\textit{Q}}$ and the subset of the first $K+1$ states whose members are directly reachable from at least one state in $\{K+1,K+2,\ldots\}$ . Furthermore, we introduce new state transition structures called (K, N)-skip-free sets, using which we obtain the minimum convex polytope that contains $\boldsymbol{\pi}(N)$ .


1995 ◽  
Vol 32 (02) ◽  
pp. 349-374
Author(s):  
William Rising

A generalization of the familiar birth–death chain, called the geometric chain, is introduced and explored. By the introduction of two families of parameters in addition to the infinitesimal birth and death rates, the geometric chain allows transitions beyond the nearest neighbor, but is shown to retain the simple computational formulas of the birth–death chain for the stationary distribution and the expected first-passage times between states. It is also demonstrated that even when not reversible, a reversed geometric chain is again a geometric chain.


1968 ◽  
Vol 5 (2) ◽  
pp. 401-413 ◽  
Author(s):  
Paul J. Schweitzer

A perturbation formalism is presented which shows how the stationary distribution and fundamental matrix of a Markov chain containing a single irreducible set of states change as the transition probabilities vary. Expressions are given for the partial derivatives of the stationary distribution and fundamental matrix with respect to the transition probabilities. Semi-group properties of the generators of transformations from one Markov chain to another are investigated. It is shown that a perturbation formalism exists in the multiple subchain case if and only if the change in the transition probabilities does not alter the number of, or intermix the various subchains. The formalism is presented when this condition is satisfied.


1982 ◽  
Vol 19 (01) ◽  
pp. 240-244
Author(s):  
J. Keilson

The present value is studied when I(t) is a stationary random income stream. The stationary distribution of V(t) for a family of simple streams modeled by stationary finite Markov chains is given explicitly. The process V(t) is shown to be observable in a special sense when I(t) is time-reversible.


1994 ◽  
Vol 26 (3) ◽  
pp. 756-774 ◽  
Author(s):  
Dimitris N. Politis

A generalization of the notion of a stationary Markov chain in more than one dimension is proposed, and is found to be a special class of homogeneous Markov random fields. Stationary Markov chains in many dimensions are shown to possess a maximum entropy property, analogous to the corresponding property for Markov chains in one dimension. In addition, a representation of Markov chains in many dimensions is provided, together with a method for their generation that converges to their stationary distribution.


1983 ◽  
Vol 20 (01) ◽  
pp. 191-196 ◽  
Author(s):  
R. L. Tweedie

We give conditions under which the stationary distribution π of a Markov chain admits moments of the general form ∫ f(x)π(dx), where f is a general function; specific examples include f(x) = xr and f(x) = esx . In general the time-dependent moments of the chain then converge to the stationary moments. We show that in special cases this convergence of moments occurs at a geometric rate. The results are applied to random walk on [0, ∞).


Sign in / Sign up

Export Citation Format

Share Document