scholarly journals Branching Law for the Finite Subgroups of SL4ℂ and the Related Generalized Poincaré Polynomials

2016 ◽  
Vol 67 (10) ◽  
pp. 1484-1497 ◽  
Author(s):  
F. Butin
2014 ◽  
Vol 46 (02) ◽  
pp. 400-421 ◽  
Author(s):  
Daniela Bertacchi ◽  
Fabio Zucca

In this paper we study the strong local survival property for discrete-time and continuous-time branching random walks. We study this property by means of an infinite-dimensional generating functionGand a maximum principle which, we prove, is satisfied by every fixed point ofG. We give results for the existence of a strong local survival regime and we prove that, unlike local and global survival, in continuous time, strong local survival is not a monotone property in the general case (though it is monotone if the branching random walk is quasitransitive). We provide an example of an irreducible branching random walk where the strong local property depends on the starting site of the process. By means of other counterexamples, we show that the existence of a pure global phase is not equivalent to nonamenability of the process, and that even an irreducible branching random walk with the same branching law at each site may exhibit nonstrong local survival. Finally, we show that the generating function of an irreducible branching random walk can have more than two fixed points; this disproves a previously known result.


2021 ◽  
Vol 391 ◽  
pp. 107966
Author(s):  
Mahmood Etedadialiabadi ◽  
Su Gao ◽  
François Le Maître ◽  
Julien Melleray

2011 ◽  
Vol 23 (1) ◽  
Author(s):  
Dessislava H. Kochloukova ◽  
Conchita Martínez-Pérez ◽  
Brita E. A. Nucinkis

1997 ◽  
Vol 125 (2) ◽  
pp. 323-327 ◽  
Author(s):  
Silvana Franciosi ◽  
Francesco de Giovanni
Keyword(s):  

2014 ◽  
Vol 46 (2) ◽  
pp. 400-421 ◽  
Author(s):  
Daniela Bertacchi ◽  
Fabio Zucca

In this paper we study the strong local survival property for discrete-time and continuous-time branching random walks. We study this property by means of an infinite-dimensional generating function G and a maximum principle which, we prove, is satisfied by every fixed point of G. We give results for the existence of a strong local survival regime and we prove that, unlike local and global survival, in continuous time, strong local survival is not a monotone property in the general case (though it is monotone if the branching random walk is quasitransitive). We provide an example of an irreducible branching random walk where the strong local property depends on the starting site of the process. By means of other counterexamples, we show that the existence of a pure global phase is not equivalent to nonamenability of the process, and that even an irreducible branching random walk with the same branching law at each site may exhibit nonstrong local survival. Finally, we show that the generating function of an irreducible branching random walk can have more than two fixed points; this disproves a previously known result.


Sign in / Sign up

Export Citation Format

Share Document