Session-aware news recommendations using random walks on time-evolving heterogeneous information networks

2020 ◽  
Vol 30 (4) ◽  
pp. 727-755 ◽  
Author(s):  
Panagiotis Symeonidis ◽  
Lidija Kirjackaja ◽  
Markus Zanker
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hong-Lan Botterman ◽  
Robin Lamarche-Perrin

AbstractSocio-technical systems usually consist of many intertwined networks, each connecting different types of objects or actors through a variety of means. As these networks are co-dependent, one can take advantage of this entangled structure to study interaction patterns in a particular network from the information provided by other related networks. A method is, hence, proposed and tested to recover the weights of missing or unobserved links in heterogeneous information networks (HIN)—abstract representations of systems composed of multiple types of entities and their relations. Given a pair of nodes in a HIN, this work aims at recovering the exact weight of the incident link to these two nodes, knowing some other links present in the HIN. To do so, probability distributions resulting from path-constrained random walks, i.e., random walks where the walker is forced to follow only a specific sequence of node types and edge types, capable to capture specific semantics and commonly called a meta-path, are combined in a linearly fashion to approximate the desired result. This method is general enough to compute the link weight between any types of nodes. Experiments on Twitter and bibliographic data show the applicability of the method.


2021 ◽  
Vol 859 ◽  
pp. 80-115
Author(s):  
Pedro Ramaciotti Morales ◽  
Robin Lamarche-Perrin ◽  
Raphaël Fournier-S'niehotta ◽  
Rémy Poulain ◽  
Lionel Tabourier ◽  
...  

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Jibing Wu ◽  
Lianfei Yu ◽  
Qun Zhang ◽  
Peiteng Shi ◽  
Lihua Liu ◽  
...  

The heterogeneous information networks are omnipresent in real-world applications, which consist of multiple types of objects with various rich semantic meaningful links among them. Community discovery is an effective method to extract the hidden structures in networks. Usually, heterogeneous information networks are time-evolving, whose objects and links are dynamic and varying gradually. In such time-evolving heterogeneous information networks, community discovery is a challenging topic and quite more difficult than that in traditional static homogeneous information networks. In contrast to communities in traditional approaches, which only contain one type of objects and links, communities in heterogeneous information networks contain multiple types of dynamic objects and links. Recently, some studies focus on dynamic heterogeneous information networks and achieve some satisfactory results. However, they assume that heterogeneous information networks usually follow some simple schemas, such as bityped network and star network schema. In this paper, we propose a multityped community discovery method for time-evolving heterogeneous information networks with general network schemas. A tensor decomposition framework, which integrates tensor CP factorization with a temporal evolution regularization term, is designed to model the multityped communities and address their evolution. Experimental results on both synthetic and real-world datasets demonstrate the efficiency of our framework.


Sign in / Sign up

Export Citation Format

Share Document