interaction patterns
Recently Published Documents


TOTAL DOCUMENTS

1632
(FIVE YEARS 570)

H-INDEX

59
(FIVE YEARS 8)

2022 ◽  
Vol 40 (3) ◽  
pp. 1-33
Author(s):  
Xingshan Zeng ◽  
Jing Li ◽  
Lingzhi Wang ◽  
Kam-Fai Wong

The popularity of social media platforms results in a huge volume of online conversations produced every day. To help users better engage in online conversations, this article presents a novel framework to automatically recommend conversations to users based on what they said and how they behaved in their chatting histories. While prior work mostly focuses on post-level recommendation, we aim to explore conversation context and model the interaction patterns therein. Furthermore, to characterize personal interests from interleaving user interactions, we learn (1) global interactions , represented by topic and discourse word clusters to reflect users’ content and pragmatic preferences, and (2) local interactions , encoding replying relations and chronological order of conversation turns to characterize users’ prior behavior. Built on collaborative filtering, our model captures global interactions via discovering word distributions to represent users’ topical interests and discourse behaviors, while local interactions are explored with graph-structured networks exploiting both reply structure and temporal features. Extensive experiments on three datasets from Twitter and Reddit show that our model coupling global and local interactions significantly outperforms the state-of-the-art model. Further analyses show that our model is able to capture meaningful features from global and local interactions, which results in its superior performance in conversation recommendation.


2022 ◽  
Author(s):  
Gayathri Sambamoorthy ◽  
Karthik Raman

Microbes thrive in communities, embedded in a complex web of interactions. These interactions, particularly metabolic interactions, play a crucial role in maintaining the community structure and function. As the organisms thrive and evolve, a variety of evolutionary processes alter the interactions among the organisms in the community, although the community function remains intact. In this work, we simulate the evolution of two-member microbial communities in silico to study how evolutionary forces can shape the interactions between organisms. We employ genomescale metabolic models of organisms from the human gut, which exhibit a range of interaction patterns, from mutualism to parasitism. We observe that the evolution of microbial interactions varies depending upon the starting interaction and also on the metabolic capabilities of the organisms in the community. We find that evolutionary constraints play a significant role in shaping the dependencies of organisms in the community. Evolution of microbial communities yields fitness benefits in only a small fraction of the communities, and is also dependent on the interaction type of the wild-type communities. The metabolites cross-fed in the wild-type communities appear in only less than 50% of the evolved communities. A wide range of new metabolites are cross-fed as the communities evolve. Further, the dynamics of microbial interactions are not specific to the interaction of the wild-type community but vary depending on the organisms present in the community. Our approach of evolving microbial communities in silico provides an exciting glimpse of the dynamics of microbial interactions and offers several avenues for future investigations.


2022 ◽  
Vol 4 ◽  
pp. 112-119 ◽  
Author(s):  
Rajesh Ramkunwar Yadav ◽  
Manoj Kanchanbhai Patel

Objectives: Children are often taken to paediatricians for recurrent physical illnesses, which often cannot be diagnosed due to a lack of confirmed investigation findings. It is important to study various psychological stressors they might be undergoing to explain such somatic complaints. Understanding the types of somatic symptoms and nature of stressors in school-going children would also enable us to use Homoeopathy in managing these cases. This is all the more important in a rural set-up, where specialist consultation is difficult to obtain. Material and Methods: Six successfully treated children from three rural high schools in Palghar area with recurrent and different somatic illnesses were selected from a part of a larger population studied. These cases have been presented with an aim to study the clinical manifestations and underlying stressors. Management with Homoeopathic medicines along with the use of some stress management skills have been presented. Results: Various life situations such as change of school, staying away from parents or interaction patterns of family members were found to have a direct impact on the genesis of either anxiety or anger. As a result, children developed recurrent somatic illnesses, which in turn affected their academic performance. Homoeopathy, along with stress management skills, helped the children to overcome the psychological stresses and reduce the burden of somatic illnesses. Conclusion: The external environment is often the same for all students in schools, but a vulnerable few are affected. This results in the development of anxieties, specifically of strangers, of the future, of teachers, or of losing parents; this in turn causes insecurity.


2022 ◽  
Vol 4 (1) ◽  
pp. 69-91
Author(s):  
Jack Fong

My discussion considers how crisis dramatically changes social relationships and interaction patterns within a multicultural context. Specifically, I note the inherent social asymmetry of multicultural configurations, thus rendering it vulnerable for the dominant ethnic/racial group, the ethnocracy, to exact symbolically and materialistically punitive measures against minorities during periods of national crisis. I situate my discussion of dramatically changed social interactions in the post- September 11, 2001 period, when the attacks on the World Trade Center towers triggered nativism against Arab Americans, or any group phenotypically similar to the construction of “Arab.” I note how this nativism is not new but is a historical and consistent articulation of the ethnocratic stratum that retracts the American identity and notions of citizenship away from minorities during times of national crisis. The discussion concludes with how American multiculturalism is still full of unresolved ethnic and racial symbolisms that hark back to nineteenth century attempts by the White power structure to idealize, culturally and phenotypically, the constitution of an “ideal” American.


2022 ◽  
Author(s):  
Line Folvik ◽  
Markus H Sneve ◽  
Hedda Ness ◽  
Didac Vidal-Pineiro ◽  
Liisa Raud ◽  
...  

Systems consolidation of new experiences into lasting episodic memories involves interactions between hippocampus and the neocortex. Evidence of this process is seen already during early awake post-encoding rest periods. Functional MRI (fMRI) studies have demonstrated increased hippocampal coupling with task-relevant perceptual regions and reactivation of stimulus-specific encoding patterns following intensive encoding tasks. Here we investigate the spatial and temporal characteristics of these hippocampally anchored post-encoding neocortical modulations. Eighty-nine adults participated in an experiment consisting of interleaved memory task- and resting-state periods. As expected, we observed increased post-encoding functional connectivity between hippocampus and individually localized neocortical regions responsive to stimulus categories encountered during memory encoding. Post-encoding modulations were however not restricted to stimulus-selective cortex, but manifested as a nearly system-wide upregulation in hippocampal coupling with all major functional networks. The spatial configuration of these extensive modulations resembled hippocampal-neocortical interaction patterns estimated from active encoding operations, suggesting hippocampal post-encoding involvement by far exceeds reactivation of perceptual aspects. This reinstatement of encoding patterns during immediate post-encoding rest was not observed in resting-state scans collected 12 hours later, nor in control analyses estimating post-encoding neocortical modulations in functional connectivity using other candidate seed regions. The broad similarity in hippocampal functional coupling between online memory encoding and offline post-encoding rest suggests reactivation in humans may involve a spectrum of cognitive processes engaged during experience of an event.


Author(s):  
Wen-Hua Xu ◽  
Guo-Dong Xu ◽  
Lei Shan

Abstract Periodic wake-­foil interactions occur in the collective swimming of bio­inspired robots. Wake interaction pattern estimation (and control) is crucial to thrust enhancement and propulsive efficiency optimization. In this paper, we study the wake interaction pattern estimation of two flapping foils in tandem configurations. The experiments are conducted at a Reynolds number of 1.41×10^4 in a water channel. A modified wake-­foil phase parameter Φ, which unifies the influences of inter­foil distance Lx, motion phase difference ∆φ and wake convection velocity Uv, is introduced to describe the wake interaction patterns parametrically. We use a differential pressure sensor on the downstream foil to capture wake interaction characteristics. Data sets at different tandem configurations are collected. The wake-­foil phase Φ is used to label the pressure signals. A one ­dimensional convolutional neural networks (1D-CNN) model is used to learn an end­to­end mapping between the raw pressure measurements and the wake-­foil phase Φ. The trained 1D-­CNN model shows accurate estimations (average error 3.5%) on random wake interaction patterns and is fast enough (within 40 ms). Then the trained 1D ­CNN model is applied to online thrust enhancement control of a downstream foil swimming in a periodic wake. Synchronous force monitoring and flow visualization demonstrate the effectiveness of the 1D-­CNN model. The limitations of the model are discussed. The proposed approach can be applied to the online estimation and control of wake interactions in the collective swimming and flying of biomimetic robots.


2022 ◽  
Vol 12 ◽  
Author(s):  
Lei Zhao ◽  
Donglin Wang ◽  
Shao-Wei Xue ◽  
Zhonglin Tan ◽  
Hong Luo ◽  
...  

Deficits in emotion regulation are the main clinical features, common risk factors, and treatment-related targets for major depressive disorder (MDD). The neural bases of emotion regulation are moving beyond specific functions and emphasizing instead the integrative functions of spatially distributed brain areas that work together as large-scale brain networks, but it is still unclear whether the dynamic interactions among these emotion networks would be the target of clinical intervention for MDD. Data were collected from 70 MDD patients and 43 sex- and age-matched healthy controls. The dynamic functional connectivity (dFC) between emotion regions was estimated via a sliding-window method based on resting-state functional magnetic resonance imaging (R-fMRI). A k-means clustering method was applied to classify all time windows across all participants into several dFC states reflecting recurring functional interaction patterns among emotion regions over time. The results showed that four dFC states were identified in the emotion networks. Their alterations of state-related occurrence proportion were found in MDD and subsequently normalized following 12-week antidepressant treatment. Baseline strong dFC could predict the reduction rate of Hamilton Depression Rating Scale (HAMD) scores. These findings highlighted the state-dependent reconfiguration of emotion regulation networks in MDD patients owing to antidepressant treatment.


2022 ◽  
Author(s):  
Emmanuelle Bignon ◽  
Marco Marazzi ◽  
Stephanie Grandemange ◽  
Antonio Monari

The viral cycle of SARS-CoV-2 is based on a complex interplay with the cellular machinery, which is mediated by specific proteins eluding or hijacking the cellular defense mechanisms. Among the complex pathways called by the viral infection autophagy is particularly crucial and is strongly influenced by the action of the non-structural protein 6 (Nsp6) interacting with the endoplasmic reticulum membrane. Importantly, differently from other non-structural proteins Nsp6 is mutated in the recently emerged Omicron variant, suggesting a possible different role of autophagy. In this contribution we explore, for the first time, the structural property of Nsp6 thanks to long-time scale molecular dynamic simulations and machine learning analysis, identifying the interaction patterns with the lipid membrane. We also show how the mutation brought by the Omicron variant may indeed modify some of the specific interactions, and more particularly help anchoring the viral protein to the lipid bilayer interface.


PeerJ ◽  
2022 ◽  
Vol 9 ◽  
pp. e12705
Author(s):  
Guangjie Fang ◽  
Haolin Yu ◽  
Huaxiang Sheng ◽  
Chuanxi Chen ◽  
Yanli Tang ◽  
...  

Marine bacteria in the seawater and seafloor are essential parts of Earth’s biodiversity, as they are critical participants of the global energy flow and the material cycles. However, their spatial-temporal variations and potential interactions among varied biotopes in artificial habitat are poorly understood. In this study, we profiled the variations of bacterial communities among seasons and areas in the water and sediment of artificial reefs using 16S rRNA gene sequencing, and analyzed the potential interaction patterns among microorganisms. Distinct bacterial community structures in the two biotopes were exhibited. The Shannon diversity and the richness of phyla in the sediment were higher, while the differences among the four seasons were more evident in the water samples. The seasonal variations of bacterial communities in the water were more distinct, while significant variations among four areas were only observed in the sediment. Correlation analysis revealed that nitrite and mud content were the most important factors influencing the abundant OTUs in the water and sediment, respectively. Potential interactions and keystone species were identified based on the three co-occurrence networks. Results showed that the correlations among bacterial communities in the sediment were lower than in the water. Besides, the abundance of the top five abundant species and five keystone species had different changing patterns among four seasons and four areas. These results enriched our understanding of the microbial structures, dynamics, and interactions of microbial communities in artificial habitats, which could provide new insights into planning, constructing and managing these special habitats in the future.


Sign in / Sign up

Export Citation Format

Share Document