Impact of Land Use on Soluble Organic Nitrogen in Soil

2004 ◽  
Vol 4 (6) ◽  
pp. 53-60 ◽  
Author(s):  
Victoria B. Willett ◽  
James J. Green ◽  
Andrew J. Macdonald ◽  
John A. Baddeley ◽  
Georg Cadisch ◽  
...  
2005 ◽  
Vol 4 (6) ◽  
pp. 53-60 ◽  
Author(s):  
Victoria B. Willett ◽  
James J. Green ◽  
Andrew J. MacDonald ◽  
John A. Baddeley ◽  
Georg Cadisch ◽  
...  

2021 ◽  
Vol 253 ◽  
pp. 105486
Author(s):  
Qingyang Liu ◽  
Yanjiu Liu ◽  
Qiang Zhao ◽  
Tingting Zhang ◽  
James J. Schauer

2021 ◽  
Vol 9 (4) ◽  
pp. 105440
Author(s):  
Ruchi Joshi ◽  
Murthy Kasi ◽  
Tanush Wadhawan ◽  
Eakalak Khan

2014 ◽  
Vol 11 (7) ◽  
pp. 11361-11389 ◽  
Author(s):  
K. Violaki ◽  
J. Sciare ◽  
J. Williams ◽  
A. R. Baker ◽  
M. Martino ◽  
...  

Abstract. To obtain a comprehensive picture on the spatial distribution of water soluble organic nitrogen (WSON) in marine aerosols, samples were collected during research cruises in the tropical and south Atlantic Ocean and during a one year period (2005) over the southern Indian Ocean (Amsterdam island). Samples have been analyzed for both organic and inorganic forms of nitrogen and the factors controlling their levels have been examined. Fine mode WSON was found to play a significant role in the remote marine atmosphere with enhanced biogenic activity, with concentrations of WSON (11.3 ± 3.3 nmol N m–3) accounting for about 84% of the total dissolved nitrogen (TDN). Such levels are similar to those observed in the polluted marine atmosphere of the eastern Mediterranean (11.6 ± 14.0 nmol N m–3). Anthropogenic activities were found to be an important source of atmospheric WSON as evidenced by the ten times higher levels in the Northern Hemisphere (NH) than in the remote Southern Hemisphere (SH). Furthermore, the higher contribution of WSON to TDN (40%) in the SH, compared to the NH (20%), underlines the important role of organic nitrogen in remote marine areas. Finally, Sahara dust was also identified as a significant source of WSON in the coarse mode aerosols of the NH.


2017 ◽  
Vol 167 ◽  
pp. 97-103 ◽  
Author(s):  
Kiyoshi Matsumoto ◽  
Yuya Yamamoto ◽  
Kotaro Nishizawa ◽  
Naoki Kaneyasu ◽  
Tomohisa Irino ◽  
...  

2005 ◽  
Vol 277 (1-2) ◽  
pp. 285-297 ◽  
Author(s):  
C. R. Chen ◽  
Z. H. Xu ◽  
S. L. Zhang ◽  
P. Keay

2016 ◽  
Vol 67 (9) ◽  
pp. 1326 ◽  
Author(s):  
J. A. Aitkenhead-Peterson ◽  
M. K. Steele

Concentrations and export of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) from terrestrial landscapes to near-coastal zones vary with land use. Information on (DOC) and (DON) concentrations and exports from urban ecosystems is sparse; thus, their source from within urbanised watersheds such as soil or vegetation or from permitted sewage discharge is unknown. We examined DOC and DON concentrations and exports in four gauged subwatersheds in the humid subtropical, upper Trinity River basin, upstream and downstream of the Dallas–Fort Worth metropolis in Texas, USA. Annual average DOC concentrations ranged from 5.7±0.4 to 6.4±0.8mgL–1 and DON concentrations ranged from 0.31±0.05 to 0.33±0.14mgL–1. Dissolved organic carbon exports, which included permitted sewage discharge, ranged from 522kgkm–2 year–1 above Dallas–Fort Worth to 3637kgkm–2 year–1 below Dallas–Fort Worth. Permitted effluent discharge contributed between 1 and 35% of DOC loading above and below the Dallas–Fort Worth metropolis. DON exports ranged from 27 to 179kgkm–2 year–1 above and below Dallas–Fort Worth respectively. There was difficulty apportioning permitted effluent-discharge contribution to DON because of the transformations among nitrogen-species. A moderate but significant relationship was found between DOC and sodium concentrations (R2=0.45; P<0.0001; n=40) and between DOC and potassium concentrations (R2=0.45; P<0.0001; n=40). Dissolved organic nitrogen also displayed a significant relationship with sodium (R2=0.33; P<0.001; n=40) and potassium (R2=0.59; P<0.001; n=40), suggesting that increases in these cations to aquatic ecosystems may induce increases in DOC and DON concentrations. Although DOC export was significantly correlated with medium-density urban land use (r=0.96; P<0.05: n=4), DON export was not (r=0.93; P>0.05; n=4), suggesting that land-management practices and permitted point-source discharges have a significant effect on aquatic DOC and DON concentrations and exports derived from urban watersheds.


Sign in / Sign up

Export Citation Format

Share Document