nitrogen concentrations
Recently Published Documents


TOTAL DOCUMENTS

998
(FIVE YEARS 202)

H-INDEX

53
(FIVE YEARS 7)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Takashi Asaeda ◽  
Mizanur Rahman ◽  
Helayaye Damitha Lakmali Abeynayaka

AbstractThe effect of combined stresses, photoinhibition, and nutrient depletion on the oxidative stress of cyanobacteria was measured in laboratory experiments to develop the biomass prediction model. Phormidium ambiguum was exposed to various photosynthetically active radiation (PAR) intensities and phosphorous (P) concentrations with fixed nitrogen concentrations. The samples were subjected to stress assays by detecting the hydrogen peroxide (H2O2) concentration and antioxidant activities of catalase (CAT) and superoxide dismutase (SOD). H2O2 concentrations decreased to 30 µmol m−2 s−1 of PAR, then increased with higher PAR intensities. Regarding P concentrations, H2O2 concentrations (nmol L−1) generally decreased with increasing P concentrations. SOD and CAT activities were proportionate to the H2O2 protein−1. No H2O2 concentrations detected outside cells indicated the biological production of H2O2, and the accumulated H2O2 concentration inside cells was parameterized with H2O2 concentration protein−1. With over 30 µmol m−2 s−1 of PAR, H2O2 concentration protein−1 had a similar increasing trend with PAR intensity, independently of P concentration. Meanwhile, with increasing P concentration, H2O2 protein−1 decreased in a similar pattern regardless of PAR intensity. Protein content decreased with gradually increasing H2O2 up to 4 nmol H2O2 mg−1 protein, which provides a threshold to restrict the growth of cyanobacteria. With these results, an empirical formula—protein (mg L−1) = − 192*Log((H2O2/protein)/4.1), where H2O2/protein (nmol mg−1) = − 0.312*PAR2/(502 + PAR2)*((25/PAR)4 + 1)*Log(P/133,100), as a function of total phosphorus concentration, P (µg L−1)—was developed to obtain the cyanobacteria biomass.


2022 ◽  
Vol 52 (7) ◽  
Author(s):  
Pedro Paulo da Silva Barros ◽  
Peterson Ricardo Fiorio ◽  
José Alexandre de Melo Demattê ◽  
Juliano Araújo Martins ◽  
Zaqueu Fernando Montezano ◽  
...  

ABSTRACT: Sugarcane is a good source of renewable energy and helps reduce the emission of greenhouse gases. Nitrogen has a critical role in plant growth; therefore,estimating nitrogen levels is essential, and remote sensing can improve fertilizer management. This field study selects wavelengths from hyperspectral data on a sugarcane canopy to generate models for estimating leaf nitrogen concentrations. The study was carried out in the municipalities of Piracicaba, Jaú, and Santa Maria da Serra, state of São Paulo, in the 2013/2014 growing season. The experiments were carried out using a completely randomized block design with split plots (three sugarcane varieties per plot [variety SP 81-3250 was common to all plots] and four nitrogen concentrations [0, 50, 100, and 150 kgha-1] per subplot) and four repetitions. The wavelengths that best correlated with leaf nitrogen were selected usingsparse partial least square regression. The wavelength regionswere combinedby stepwise multiple linear regression. Spectral bands in the visible (700-705 nm), red-edge (710-720 nm), near-infrared (725, 925, 955, and 980 nm), and short-wave infrared (1355, 1420, 1595, 1600, 1605, and 1610 nm) regions were identified. The R² and RMSE of the model were 0.50 and 1.67 g.kg-1, respectively. The adjusted R² and RMSE of the models for Piracicaba, Jaú, and Santa Maria were 0.31 (unreliable) and 1.30 g.kg-1, 0.53 and 1.96 g.kg-1, and 0.54 and 1.46 g.kg-1, respectively. Our results showed that canopy hyperspectral reflectance can estimate leaf nitrogen concentrations and manage nitrogen application in sugarcane.


2021 ◽  
Author(s):  
Han Wang ◽  
Qing Wu ◽  
Yuping Han

Abstract The incubation experiments focused on altering concentration gradients of nitrogen between sediment and overlying water to examine the diffusion flux of ammonium-nitrogen (NH4+) and nitrate-nitrogen (NO3-) at sediment-water interface. In this study, the diffusion flux can be estimated based on calculating the average of the net change rate of nutrient concentrations in the overlying water. For the incubation experiment of different TN concentrations in the sediment, the results showed that the diffusion flux of ammonia at sediment-water interface is -52.57~84.57 mg·m-2·d-1, and for nitrate diffusion flux, the changing range during the incubation experiment is -110.13~143.25 mg·m-2·d-1. For the incubation experiment of different nitrogen concentrations in the overlying water, the results of NH4+-N diffusion flux in L, M, H treatment were 3.37, -4.94, -3.84 mg·m-2·d-1, respectively. And the average diffusion flux of nitrate in L (0 mg NO3--N, 0 mg NH4+-N), M (0.5 mg NO3--N, 1.5 mg NH4+-N) and H (1 mg NO3--N, 2.5 mg NH4+-N) treatment were 12.30, 10.39 and 7.11 mg·m-2·d-1. Results highlighted that concentrations gradient of nutrients were indeed an important factor affecting the diffusion flux at sediment-water interface. In addition, the diffusion of nutrients at sediment-water interface in aquatic ecosystem is not only controlled by concentration gradients, some other factors such as incoming water, hydrodynamics, dissolved oxygen content, sediment structure, biological disturbance, horizontal migration and diffusion of nutrients and turbulent diffusion caused by wind and wave, are equally important.


Photonics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 18
Author(s):  
Vitali V. Kononenko ◽  
Maxim S. Komlenok ◽  
Pavel A. Chizhov ◽  
Vladimir V. Bukin ◽  
Vladislava V. Bulgakova ◽  
...  

The efficiency of the generation of terahertz radiation from nitrogen-doped (∼0.1–100 ppm) diamonds was investigated. The synthetic polycrystalline and monocrystalline diamond substrates were pumped by a 400 nm femtosecond laser and tested for the photoconductive emitter operation. The dependency of the emitted THz power on the intensity of the optical excitation was measured. The nitrogen concentrations of the diamonds involved were measured from the optical absorbance, which was found to crucially depend on the synthesis technique. The observed correlation between the doping level and the level of the performance of diamond-based antennas demonstrates the prospects of doped diamond as a material for highly efficient large-aperture photoconductive antennas.


2021 ◽  
Author(s):  
James Nicholas Hitchcock ◽  
Jordan Facey ◽  
Doug Westhopre ◽  
Simon Mitrovic

Observational studies and nutrient amendment experiments were conducted to better understand the nutrient and phytoplankton dynamics of the Hunter River estuary. Eutrophic conditions above ANZECC guidelines for estuaries dominate the Hunter River estuary. The upper Hunter estuary, upstream of its confluence with the Williams River, had the highest concentrations of nutrients and chlorophyll a. The major source of nutrients appears to be riverine discharge. Discharge from WWTP in the upper Hunter potentially contributes an important secondary source of phosphorus. Processes such as bank erosion and resuspension may also be important in explaining variation in nutrient concentrations. Light and turbidity were the main factors limiting phytoplankton growth in the upper estuary. The nutrient amendment experiments showed that when light limitation was alleviated, phytoplankton were either nitrogen limited or remained unlimited by nutrients (suggesting nutrients were in surplus for growth). The expression of nitrogen limitation is likely due to low N:P in the estuary. Organic nitrogen dominates the nitrogen pool within the Hunter estuary. The bioavailability of organic nitrogen in the estuary is unknown which may explain the lack of relationship between phytoplankton and nitrogen concentrations within the estuary. Diatoms and green algae dominated phytoplankton. There were occasions when toxic cyanobacteria was in high abundance in the upper estuary, however a longer data set of phytoplankton assemblage is needed to more adequately assess the risk of toxic cyanobacteria. Comparison of data from the monthly, twice-weekly, and hourly sampling intervals demonstrated the five-year monthly sampling data appeared to mostly capture the variability of nutrient and chlorophyll a concentrations in relation to their main explanatory factors (discharge and light). There were some examples of chlorophyll a and nitrogen concentrations that fell outside of predicted ranges. Overall the results suggest any increase in nitrogen loads to the estuary may lead to increased phytoplankton growth. Improved light climate may also lead to increased phytoplankton growth. Reducing inputs of both nitrogen and phosphorus to the upper Hunter estuary should be a priority action to increase ecosystem health.


2021 ◽  
Vol 8 ◽  
Author(s):  
Helena Osterholz ◽  
Christian Burmeister ◽  
Susanne Busch ◽  
Madleen Dierken ◽  
Helena C. Frazão ◽  
...  

Dissolved and particulate organic carbon (DOC, POC) and nitrogen (DON, PON) constitute essential nutrient and energy sources to heterotrophic microbes in aquatic systems. Especially in the shallow coastal ocean, the concentrations are highly variable on short timescales, and cycling is heavily affected by different sources and environmental drivers. We analyzed surface water organic carbon and nitrogen concentrations determined weekly from 2010 to 2020 in the nearshore southwestern Baltic Sea (Heiligendamm, Germany) in relation to physical, chemical and biological parameters available since 1988. Mixing of low-DOC North Sea water with high-DOC Baltic Sea water, as well as in situ primary production, were confirmed as the main drivers of organic carbon and nitrogen concentrations. Tight coupling between POC, PON, chlorophyll a and phytoplankton carbon with DON seasonal dynamics corroborated the close relationship between phytoplankton production and degradation of organic nutrients with preferential remineralization of nitrogen. Significant changes in air and water temperature, salinity, and inorganic nutrients over time indicated effects of climate change and improved water quality management in the eutrophic Baltic Sea. Bulk organic nutrient concentrations did not change over time, while the salinity-corrected fraction of the DOC increased by about 0.6 μmol L–1yr–1. Concurrently, chlorophyll a and Bacillariophyceae and Cryptophyceae carbon increased, denoting a potential link to primary productivity. The high variability of the shallow system exacerbates the detection of trends, but our results emphasize the value of these extended samplings to understand coupled biogeochemical cycling of organic matter fractions and to detect trends in these important carbon reservoirs.


2021 ◽  
Vol 3 (2) ◽  
pp. 120-129
Author(s):  
Florinela Pirvu ◽  
◽  
Iuliana Paun ◽  
Marcela Niculescu ◽  
Vasile Ion Iancu ◽  
...  

Water resources crisis can lead to a new concept of wastewater treatment. Wastewater cannot be considered waste but can be a renewable or non-renewable energy source. Nutrients from wastewater could be recycled and not disposed of. A circular economy can be created that can be based on the ability of algae to absorb and store nutrients: carbon (C), nitrogen (N) and phosphorus (P). This study investigates the stoichiometry between carbon, nitrogen and phosphorus in wastewater from three geographical regions of Romania. The concentrations of inorganic nitrogen, total nitrogen, total phosphorus, and total organic carbon were compared and evaluated. Three wastewater sampling points located in different areas were monitored, in the period 2013-2017 for the sampling point located in the central-northern part of the Romanian Plain and in the period 2015-2017 for the other two studied areas. The obtained results showed very high values of total nitrogen concentrations with values between 28.2 mg/L and 107.2 mg/L for the southeastern part of Romania. The values of the stoichiometric ratio’s C/N, C/P, N/P have varied over time with maximums in the autumn and winter seasons which indicates the existence of significant contamination of wastewater. It may be possible in the future to improve the performance of wastewater treatment by adjusting C, N, and P parameters.


2021 ◽  
Author(s):  
Christopher John Walsh ◽  
Sam Imberger ◽  
Matthew J Burns ◽  
Darren G Bos ◽  
Tim D Fletcher

Traditional approaches to urban drainage degrade receiving waters. Alternative approaches have potential to protect downstream waters and provide other benefits to cities, including greater water security. Their widespread adoption requires robust demonstration of their feasibility and effectiveness. We conducted a catchment-scale, before-after-control-reference-impact experiment to assess the effect of dispersed stormwater control on stream ecosystems. We used a variant of effective imperviousness (EI), integrating catchment-scale stormwater runoff impact and stormwater-control-measure (SCM) performance, as the measure of experimental effect. We assessed the response of water quality variables in 6 sites on 2 streams, following SCM implementation in their catchments. We compared changes in those streams over 7 years, as SCM implementation increased, to the 12 preceding years, and over the 19 years in 3 reference and 2 control streams. SCMs reduced phosphorus and nitrogen concentrations and temperature, and increased electrical conductivity; with effect size negatively correlated with antecedent rain. SCM-induced reductions in phosphorus and temperature were of a similar magnitude to increases from urban development, when assessed as a function of change in EI. Nitrogen reductions were observed, even though concentrations among sites were not correlated with EI, being more influenced by septic tank seepage. SCMs had no effect on suspended solids concentrations, which were lower in urban streams than in reference streams. This experiment strengthens the inference that urban stormwater drainage increases contaminant concentrations in urban streams, and demonstrates that such impacts are reversible and likely preventable. SCMs reduce contaminant concentrations by reducing the frequency and magnitude of uncontrolled drainage flows and augmenting reduced baseflows. Increased EC and reduced temperature are likely a result of increased contribution of groundwater to baseflows. The stormwater control achieved by the experiment did not fully return phosphorus or nitrogen concentrations to reference levels, but their responses indicate such an outcome is possible in dominant conditions (up to ~20 mm of 24-h antecedent rain). This would require nearly all impervious surfaces draining to SCMs with large retention capacity, thus requiring more downslope space and water demand. EI predicts stream water quality responses to SCMs, allowing better catchment prioritization and SCM design standards for stream protection.


Author(s):  
C. Langdon Fielding ◽  
K. Gary Magdesian

Abstract OBJECTIVE To evaluate changes in electrolyte concentrations and hydration status that take place in endurance horses prior to the start of a competition and determine whether these changes would be associated with elimination. ANIMALS 19 horses entered in the 2016 Tevis Cup 100-Miles (160 km) One-Day Western States Trail Ride. PROCEDURES Heparinized blood samples were collected at 5 time points: prior to transport to the ride (T0), during check-in the day before the ride (T1), 1 to 2 hours before the start of the ride (T2), at the 15-km mark (T3), and at the 55-km mark (T4). Packed cell volume and plasma sodium, potassium, chloride, urea nitrogen, glucose, bicarbonate, and total protein concentrations were determined and compared across time points and between finishers and nonfinishers. RESULTS Signif icant differences were detected among plasma sodium, potassium, and urea nitrogen concentrations measured prior to the start of the ride (ie, T0, T1, and T2). For all variables except chloride and bicarbonate concentrations, significant differences were detected between values obtained prior to the start of the ride and values obtained during the ride (ie, T3 and T4). Only bicarbonate concentration at the 15-km mark of the ride was significantly associated with finishing status. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that significant changes in plasma sodium, potassium, and urea nitrogen concentrations can occur in endurance horses during transport to a competition and when horses are stabled overnight before an event. Additionally, a lower bicarbonate concentration following a steep climb early during the ride was associated with subsequent elimination.


CATENA ◽  
2021 ◽  
Vol 207 ◽  
pp. 105625
Author(s):  
Ding Yang ◽  
Xiao Pan Pang ◽  
Zhi Feng Jia ◽  
Zheng Gang Guo

Sign in / Sign up

Export Citation Format

Share Document