Cell detection in pathology and microscopy images with multi-scale fully convolutional neural networks

2018 ◽  
Vol 21 (6) ◽  
pp. 1721-1743 ◽  
Author(s):  
Xipeng Pan ◽  
Dengxian Yang ◽  
Lingqiao Li ◽  
Zhenbing Liu ◽  
Huihua Yang ◽  
...  
Author(s):  
Michael Majurski ◽  
Peter Bajcsy

We address the problem of performing exact (tiling-error free) out-of-core semantic segmentation inference of arbitrarily large images using fully convolutional neural networks (FCN). FCN models have the property that once a model is trained, it can be applied on arbitrarily sized images, although it is still constrained by the available GPU memory. This work is motivated by overcoming the GPU memory size constraint without numerically impacting the fnal result. Our approach is to select a tile size that will ft into GPU memory with a halo border of half the network receptive feld. Next, stride across the image by that tile size without the halo. The input tile halos will overlap, while the output tiles join exactly at the seams. Such an approach enables inference to be performed on whole slide microscopy images, such as those generated by a slide scanner. The novelty of this work is in documenting the formulas for determining tile size and stride and then validating them on U-Net and FC-DenseNet architectures. In addition, we quantify the errors due to tiling confgurations which do not satisfy the constraints, and we explore the use of architecture effective receptive felds to estimate the tiling parameters.


2021 ◽  
Vol 70 ◽  
pp. 101996
Author(s):  
Rüdiger Schmitz ◽  
Frederic Madesta ◽  
Maximilian Nielsen ◽  
Jenny Krause ◽  
Stefan Steurer ◽  
...  

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Fuyong Xing ◽  
Yuanpu Xie ◽  
Xiaoshuang Shi ◽  
Pingjun Chen ◽  
Zizhao Zhang ◽  
...  

Abstract Background Nucleus or cell detection is a fundamental task in microscopy image analysis and supports many other quantitative studies such as object counting, segmentation, tracking, etc. Deep neural networks are emerging as a powerful tool for biomedical image computing; in particular, convolutional neural networks have been widely applied to nucleus/cell detection in microscopy images. However, almost all models are tailored for specific datasets and their applicability to other microscopy image data remains unknown. Some existing studies casually learn and evaluate deep neural networks on multiple microscopy datasets, but there are still several critical, open questions to be addressed. Results We analyze the applicability of deep models specifically for nucleus detection across a wide variety of microscopy image data. More specifically, we present a fully convolutional network-based regression model and extensively evaluate it on large-scale digital pathology and microscopy image datasets, which consist of 23 organs (or cancer diseases) and come from multiple institutions. We demonstrate that for a specific target dataset, training with images from the same types of organs might be usually necessary for nucleus detection. Although the images can be visually similar due to the same staining technique and imaging protocol, deep models learned with images from different organs might not deliver desirable results and would require model fine-tuning to be on a par with those trained with target data. We also observe that training with a mixture of target and other/non-target data does not always mean a higher accuracy of nucleus detection, and it might require proper data manipulation during model training to achieve good performance. Conclusions We conduct a systematic case study on deep models for nucleus detection in a wide variety of microscopy images, aiming to address several important but previously understudied questions. We present and extensively evaluate an end-to-end, pixel-to-pixel fully convolutional regression network and report a few significant findings, some of which might have not been reported in previous studies. The model performance analysis and observations would be helpful to nucleus detection in microscopy images.


2017 ◽  
Author(s):  
Patrick Brandao ◽  
Evangelos Mazomenos ◽  
Gastone Ciuti ◽  
Renato Caliò ◽  
Federico Bianchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document