interference mitigation
Recently Published Documents


TOTAL DOCUMENTS

1759
(FIVE YEARS 337)

H-INDEX

40
(FIVE YEARS 7)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 679
Author(s):  
Johannes Rossouw van der van der Merwe ◽  
Fabio Garzia ◽  
Alexander Rügamer ◽  
Santiago Urquijo ◽  
David Contreras Franco ◽  
...  

The performance of GNSS receivers is significantly affected by interference signals. For this reason, several research groups have proposed methods to mitigate the effect of different kinds of jammers. One effective method for wide-band IM is the HDDM PB. It provides good performance to pulsed and frequency sparse interference. However, it and many other methods have poor performance against wide-band noise signals, which are not frequency-sparse. This article proposes to include AGC in the HDDM structure to attenuate the signal instead of removing it: the HDDM-AGC. It overcomes the wide-band noise limitation for IM at the cost of limiting mitigation capability to other signals. Previous studies with this approach were limited to only measuring the CN0 performance of tracking, but this article extends the analysis to include the impact of the HDDM-AGC algorithm on the PVT solution. It allows an end-to-end evaluation and impact assessment of mitigation to a GNSS receiver. This study compares two commercial receivers: one high-end and one low-cost, with and without HDDM IM against laboratory-generated interference signals. The results show that the HDDM-AGC provides a PVT availability and precision comparable to high-end commercial receivers with integrated mitigation for most interference types. For pulse interferences, its performance is superior. Further, it is shown that degradation is minimized against wide-band noise interferences. Regarding low-cost receivers, the PVT availability can be increased up to 40% by applying an external HDDM-AGC.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 93
Author(s):  
Yue Yin ◽  
Tao Yu ◽  
Kazuki Maruta ◽  
Kei Sakaguchi

The millimeter-wave (mmWave) Vehicle-to-Vehicle (V2V) communication system has drawn attention as a critical technology to extend the restricted perception of onboard sensors and upgrade the level of vehicular safety that requires a high data rate. However, co-channel inter-link interference presents significant challenges for scalable V2V communications. To overcome such limitations, this paper firstly analyzes the required data rate ensuring maneuver safety via mmWave V2V relays in an overtaking traffic scenario. Based on these preparations, we propose a distributed radio resource management scheme that integrates spatial, frequency, and power domains for two transmission ranges (short/long). In the spatial domain, ZigZag antenna configuration is utilized to mitigate the interference, which plays a decisive role in the short inter-vehicle distance. In frequency and power domains, two resource blocks are allocated alternately, and transmit power is controlled to suppress the interference, which has a decisive impact on interference mitigation in the long inter-vehicle distance. Simulation results reveal that the achievable End-to-End (E2E) throughput maintains consistently higher than the required data rate for all vehicles. Most importantly, it works effectively in scalable mmWave V2V topology.


2021 ◽  
Vol 2 (2) ◽  
pp. 165-185
Author(s):  
Md Moin Uddin Chowdhury ◽  
Ismail Guvenc ◽  
Walid Saad ◽  
Arupjyoti Bhuyan

To integrate unmanned aerial vehicles (UAVs) in future large-scale deployments, a new wireless communication paradigm, namely, the cellular-connected UAV has recently attracted interest. However, the line-of-sight dominant air-to-ground channels along with the antenna pattern of the cellular ground base stations (GBSs) introduce critical interference issues in cellular-connected UAV communications. In particular, the complex antenna pattern and the ground reflection (GR) from the down-tilted antennas create both coverage holes and patchy coverage for the UAVs in the sky, which leads to unreliable connectivity from the underlying cellular network. To overcome these challenges, in this paper, we propose a new cellular architecture that employs an extra set of co-channel antennas oriented towards the sky to support UAVs on top of the existing down-tilted antennas for ground user equipment (GUE). To model the GR stemming from the down-tilted antennas, we propose a path-loss model, which takes both antenna radiation pattern and configuration into account. Next, we formulate an optimization problem to maximize the minimum signal-to-interference ratio (SIR) of the UAVs by tuning the up-tilt (UT) angles of the up-tilted antennas. Since this is an NP-hard problem, we propose a genetic algorithm (GA) based heuristic method to optimize the UT angles of these antennas. After obtaining the optimal UT angles, we integrate the 3GPP Release-10 specified enhanced inter-cell interference coordination (eICIC) to reduce the interference stemming from the down-tilted antennas. Our simulation results based on the hexagonal cell layout show that the proposed interference mitigation method can ensure higher minimum SIRs for the UAVs over baseline methods while creating minimal impact on the SIR of GUEs.


2021 ◽  
Vol 2 (2) ◽  
pp. 157-164
Author(s):  
Weidong Gao ◽  
Terrence Mak ◽  
Lie-Liang Yang

In multiple access molecular diffusive communications, many nano-machines exchange information and fuse data through a common Diffusive Molecular Communication (DMC) channel. Hence, there is Multiple-Access Interference (MAI), which should be sufficiently mitigated so as to achieve reliable communications. In this paper, we propose a novel low-complexity detection scheme, namely Equal-Gain Combining with Interference Mitigation (EGC-IM), for signal detection in the Molecular Type Hopping assisted Molecular Shift Keying (MTH-MoSK) DMC systems. By removing a number of entries from each row of the detection matrix formed during detection, the EGC-IM scheme shows its potential to significantly mitigate MAI and hence, outperform the conventional EGC scheme. Furthermore, the EGC-IM scheme has lower complexity than the conventional EGC scheme and therefore, it is beneficial for practical implementation.


Author(s):  
Chuan-Peng Zhang ◽  
Jin-Long Xu ◽  
Jie Wang ◽  
Yingjie Jing ◽  
Ziming Liu ◽  
...  

Abstract In radio astronomy, radio frequency interference (RFI) becomes more and more serious for radio observational facilities. The RFI always influences the search and study of the interesting astronomical objects. Mitigating the RFI becomes an essential procedure in any survey data processing. Five-hundred-meter Aperture Spherical radio Telescope (FAST) is an extremely sensitive radio telescope. It is necessary to find out an effective and precise RFI mitigation method for FAST data processing. In this work, we introduce a method to mitigate the RFI in FAST spectral observation and make a statistics for the RFI using ∼300 hours FAST data. The details are as follows. Firstly, according to the characteristics of FAST spectra, we propose to use the ArPLS algorithm for baseline fitting. Our test results show that it has a good performance. Secondly, we flag the RFI with four strategies, which are to flag extremely strong RFI, flag long-lasting RFI, flag polarized RFI, and flag beam-combined RFI, respectively. The test results show that all the RFI above a preset threshold could be flagged. Thirdly, we make a statistics for the probabilities of polarized XX and YY RFI in FAST observations. The statistical results could tell us which frequencies are relatively quiescent. With such statistical data, we are able to avoid using such frequencies in our spectral observations. Finally, based on the ∼300 hours FAST data, we got an RFI table, which is the most complete database currently for FAST.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7787
Author(s):  
Ciro Gioia ◽  
Daniele Borio

A multi-layered interference mitigation approach can significantly improve the performance of Global Navigation Satellite System (GNSS) receivers in the presence of jamming. In this work, three levels of defence are considered including: pre-correlation interference mitigation techniques, post-correlation measurement screening and FDE at the Position, Velocity, and Time (PVT) level. The performance and interaction of these receiver defences are analysed with specific focus on Robust Interference Mitigation (RIM), measurement screening through Lock Indicator (LIs) and Receiver Autonomous Integrity Monitoring (RAIM). The case of timing receivers with a known user position and using Galileo signals from different frequencies has been studied with Time-Receiver Autonomous Integrity Monitoring (T-RAIM) based on the Backward-Forward method. From the experimental analysis it emerges that RIM improves the quality of the measurements reducing the number of exclusions performed by T-RAIM. Effective measurements screening is also fundamental to obtain unbiased timing solutions: in this respect T-RAIM can provide the required level of reliability.


2021 ◽  
Vol 1 ◽  
Author(s):  
Yuanchen Wang ◽  
Eng Gee Lim ◽  
Xiaoping Xue ◽  
Guangyu Zhu ◽  
Rui Pei ◽  
...  

In Internet-of-Things, downlink multi-device interference has long been considered as a harmful element deteriorating system performance, and thus the principle of the classic interference-mitigation based precoding is to suppress the multi-device interference by exploiting the spatial orthogonality. In recent years, a judicious interference utilization precoding has been developed, which is capable of exploiting multi-device interference as a beneficial element for improving device’s reception performance, thus reducing downlink communication latency. In this review paper, we aim to review the emerging interference utilization precoding techniques. We first briefly introduce the concept of constructive interference, and then we present two generic downlink interference-utilization optimizations, which utilizes the multi-device interference for enhancing system performance. Afterwards, the application of interference utilization precoding is discussed in multi-cluster scenario. Finally, some open challenges and future research topics are envisaged.


Sign in / Sign up

Export Citation Format

Share Document