free cell
Recently Published Documents


TOTAL DOCUMENTS

505
(FIVE YEARS 123)

H-INDEX

55
(FIVE YEARS 7)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 546
Author(s):  
Klytaimnistra Katsara ◽  
Konstantina Psatha ◽  
George Kenanakis ◽  
Michalis Aivaliotis ◽  
Vassilis M. Papadakis

Raman spectroscopy is a well-defined spectroscopic technique sensitive to the molecular vibrations of materials, since it provides fingerprint-like information regarding the molecular structure of the analyzed samples. It has been extensively used for non-destructive and label-free cell characterization, particularly in the qualitative and quantitative estimation of amino acids, lipids, nucleic acids, and carbohydrates. Lymphoma cell classification is a crucial task for accurate and prompt lymphoma diagnosis, prognosis, and treatment. Currently, it is mostly based on limited information and requires costly and time-consuming approaches. In this work, we are proposing a fast characterization and differentiation methodology of lymphoma cell subtypes based on Raman spectroscopy. The study was performed in the temperature range of 15–37 °C to identify the best cell measurement conditions. The proposed methodology is fast, accurate, and requires minimal sample preparation, resulting in a potentially promising, non-invasive strategy for early and accurate cell lymphoma characterization.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Muhamad Aidilfitri Mohamad Roslan ◽  
Zulfazli M. Sobri ◽  
Ali Tan Kee Zuan ◽  
Sim Choon Cheak ◽  
Nor Aini Abdul Rahman

AbstractThe extraction of soluble hydrolysate protein and sugar from a biomass cocktail of defatted soybean meal (DSM) and jackfruit peel (JP) was examined using microwave-alkaline hydrolysis by varying the NaOH concentrations (0.04–0.11 M) and residence times (2–11 min). Based on the central composite design, the optimized parameters were achieved at 0.084 M NaOH concentration (100 mL), for 8.7 min at 300 W microwave power level to obtain the highest protein (5.31 mg/mL) and sugar concentrations (8.07 mg/mL) with > 75% recovery. Both raw and detoxified hydrolysate (using activated carbon) were correspondingly biocompatible with Enterobacter hormaechei strain 40a (P > 0.05) resulting in maximal cell counts of > 10 log CFU/mL. The optimized hydrolysate was prepared as an additive in molasses-alginate bead encapsulation of strain 40a. Further evaluation on phosphate and potassium solubilization performance of the encapsulated strain 40a exhibited comparable results with those of free cell counterpart (P > 0.05). The DSM-JP hydrolysate cocktail holds potential as a carrier additive of encapsulated-cell bead biofertilizers in order to sustain bacterial cell quality and consequently improve crop growth and productivity.


2021 ◽  
Author(s):  
Karin Schütze ◽  
Hesham Yosef ◽  
Juliane Strietz ◽  
Susana Minguet ◽  
Romy Kronstein-Wiedemann ◽  
...  

2021 ◽  
pp. 2101033
Author(s):  
Tamaghna Gupta ◽  
Rohit Gupta ◽  
Mohammadhossein Dabaghi ◽  
Rakesh P. Sahu ◽  
Jeremy A. Hirota ◽  
...  

Cryobiology ◽  
2021 ◽  
Vol 103 ◽  
pp. 187
Author(s):  
Yulong Zhong ◽  
Jillian Mcgrath ◽  
Thomas Sobiech ◽  
Bing Gong
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alan Ransil ◽  
Angela M. Belcher

AbstractSodium trisilicate waterglass is an earth-abundant inorganic adhesive which binds to diverse materials and exhibits extreme chemical and temperature stability. Here we demonstrate the use of this material as an electrode binder in a lay-up based manufacturing system to produce structural batteries. While conventional binders for structural batteries exhibit a trade-off between mechanical and electrochemical performance, the waterglass binder is rigid, adhesive, and facilitates ion transport. The bulk binder maintains a Young’s modulus of >50 GPa in the presence of electrolyte solvent while waterglass-based electrodes have high rate capability and stable discharge capacity over hundreds of electrochemical cycles. The temperature stability of the binder enables heat treatment of the full cell stack following lay-up shaping in order to produce a rigid, load-bearing part. The resulting structural batteries exhibit impressive multifunctional performance with a package free cell stack-level energy density of 93.9 Wh/kg greatly surpassing previously published structural battery materials, and a tensile modulus of 1.4 GPa.


2021 ◽  
Author(s):  
Jan Oscar Cross-Zamirski ◽  
Elizabeth Mouchet ◽  
Guy Williams ◽  
Carola-Bibiane Schönlieb ◽  
Riku Turkki ◽  
...  

Cell Painting is a high-content image-based assay which can reveal rich cellular morphology and is applied in drug discovery to predict bioactivity, assess toxicity and understand diverse mechanisms of action of chemical and genetic perturbations. In this study, we investigate label-free Cell Painting by predicting the five fluorescent Cell Painting channels from paired brightfield z-stacks using deep learning models. We train and validate the models with a dataset representing 1000s of pan-assay interference compounds sampled from 17 unique batches. The model predictions are evaluated using a test set from two additional batches, treated with compounds comprised from a publicly available phenotypic set. In addition to pixel-level evaluation, we process the label-free Cell Painting images with a segmentation-based feature-extraction pipeline to understand whether the generated images are useful in downstream analysis. The mean Pearson correlation coefficient (PCC) of the images across all five channels is 0.84. Without actually incorporating these features into the model training we achieved a mean correlation of 0.45 from the features extracted from the images. Additionally we identified 30 features which correlated greater than 0.8 to the ground truth. Toxicity analysis on the label-free Cell Painting resulted a sensitivity of 62.5% and specificity of 99.3% on images from unseen batches. Additionally, we provide a breakdown of the feature profiles by channel and feature type to understand the potential and limitation of the approach in morphological profiling. Our findings demonstrate that label-free Cell Painting has potential above the improved visualization of cellular components, and it can be used for downstream analysis. The findings also suggest that label-free Cell Painting could allow for repurposing the imaging channels for other non-generic fluorescent stains of more targeted biological interest, thus increasing the information content of the assay.


2021 ◽  
Vol 156 ◽  
pp. 103615
Author(s):  
Bradley M. Bartholomai ◽  
Amy S. Gladfelter ◽  
Jennifer J. Loros ◽  
Jay C. Dunlap

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Giuseppina Bozzuto ◽  
Giuseppe D’Avenio ◽  
Maria Condello ◽  
Simona Sennato ◽  
Ezio Battaglione ◽  
...  

Abstract Background There is a huge body of literature data on ZnOnanoparticles (ZnO NPs) toxicity. However, the reported results are seen to be increasingly discrepant, and deep comprehension of the ZnO NPs behaviour in relation to the different experimental conditions is still lacking. A recent literature overview emphasizes the screening of the ZnO NPs toxicity with more than one assay, checking the experimental reproducibility also versus time, which is a key factor for the robustness of the results. In this paper we compared high-throughput real-time measurements through Electric Cell-substrate Impedance-Sensing (ECIS®) with endpoint measurements of multiple independent assays. Results ECIS-measurements were compared with traditional cytotoxicity tests such as MTT, Neutral red, Trypan blue, and cloning efficiency assays. ECIS could follow the cell behavior continuously and noninvasively for days, so that certain long-term characteristics of cell proliferation under treatment with ZnO NPs were accessible. This was particularly important in the case of pro-mitogenic activity exerted by low-dose ZnO NPs, an effect not revealed by endpoint independent assays. This result opens new worrisome questions about the potential mitogenic activity exerted by ZnO NPs, or more generally by NPs, on transformed cells. Of importance, impedance curve trends (morphology) allowed to discriminate between different cell death mechanisms (apoptosis vs autophagy) in the absence of specific reagents, as confirmed by cell structural and functional studies by high-resolution microscopy. This could be advantageous in terms of costs and time spent. ZnO NPs-exposed A549 cells showed an unusual pattern of actin and tubulin distribution which might trigger mitotic aberrations leading to genomic instability. Conclusions ZnO NPs toxicity can be determined not only by the intrinsic NPs characteristics, but also by the external conditions like the experimental setting, and this could account for discrepant data from different assays. ECIS has the potential to recapitulate the needs required in the evaluation of nanomaterials by contributing to the reliability of cytotoxicity tests. Moreover, it can overcome some false results and discrepancies in the results obtained by endpoint measurements. Finally, we strongly recommend the comparison of cytotoxicity tests (ECIS, MTT, Trypan Blue, Cloning efficiency) with the ultrastructural cell pathology studies. Graphic Abstract


Sign in / Sign up

Export Citation Format

Share Document