Multi-task attributed graphical lasso and its application in fund classification

2021 ◽  
Author(s):  
Yao Zhang ◽  
Sijia Peng ◽  
Yun Xiong ◽  
Xiangnan Kong ◽  
Xinyue Liu ◽  
...  
Keyword(s):  
Inventions ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 52
Author(s):  
Rajan Kapoor ◽  
Aniruddha Datta ◽  
Michael Thomson

Conventional breeding approaches that focus on yield under highly favorable nutrient conditions have resulted in reduced genetic and trait diversity in crops. Under the growing threat from climate change, the mining of novel genes in more resilient varieties can help dramatically improve trait improvement efforts. In this work, we propose the use of the joint graphical lasso for discovering genes responsible for desired phenotypic traits. We prove its efficiency by using gene expression data for wild type and delayed flowering mutants for the model plant. Arabidopsis thaliana shows that it recovers the mutation causing genes LNK1 and LNK2. Some novel interactions of these genes were also predicted. Observing the network level changes between two phenotypes can also help develop meaningful biological hypotheses regarding the novel functions of these genes. Now that this data analysis strategy has been validated in a model plant, it can be extended to crop plants to help identify the key genes for beneficial traits for crop improvement.


2020 ◽  
Author(s):  
Marco Battaglini ◽  
Forrest Crawford ◽  
Eleonora Patacchini ◽  
Sida Peng

2019 ◽  
Vol 28 (2) ◽  
pp. 471-475 ◽  
Author(s):  
Ziwen An ◽  
Leah F. South ◽  
David J. Nott ◽  
Christopher C. Drovandi
Keyword(s):  

2021 ◽  
Author(s):  
Joran Jongerling ◽  
Sacha Epskamp ◽  
Donald Ray Williams

Gaussian Graphical Models (GGMs) are often estimated using regularized estimation and the graphical LASSO (GLASSO). However, the GLASSO has difficulty estimating(uncertainty in) centrality indices of nodes. Regularized Bayesian estimation might provide a solution, as it is better suited to deal with bias in the sampling distribution ofcentrality indices. This study therefore compares estimation of GGMs with a Bayesian GLASSO- and a Horseshoe prior to estimation using the frequentist GLASSO in an extensive simulation study. Results showed that out of the two Bayesian estimation methods, the Bayesian GLASSO performed best. In addition, the Bayesian GLASSOperformed better than the frequentist GLASSO with respect to bias in edge weights, centrality measures, correlation between estimated and true partial correlations, andspecificity. With respect to sensitivity the frequentist GLASSO performs better.However, sensitivity of the Bayesian GLASSO is close to that of the frequentist GLASSO (except for the smallest N used in the simulations) and tends to be favored over the frequentist GLASSO in terms of F1. With respect to uncertainty in the centrality measures, the Bayesian GLASSO shows good coverage for strength andcloseness centrality. Uncertainty in betweenness centrality is estimated less well, and typically overestimated by the Bayesian GLASSO.


Sign in / Sign up

Export Citation Format

Share Document