beneficial traits
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 58)

H-INDEX

19
(FIVE YEARS 5)

Author(s):  
Kitti Szőke-Pázsi ◽  
Edina Türkösi ◽  
Éva Szakács

AbstractThe perennial Secale cereanum cultivar ‘Kriszta’ is an artificial hybrid of S. cereale and S. strictum ssp. anatolicum. From the cross between the wheat line Mv9kr1 and ‘Kriszta’, which aimed the transfer of beneficial traits from rye to wheat, numerous translocation lines have been produced. For the identification of the translocated chromosomes, the unambiguous differentiation between chromosome arms of ‘Kriszta’ is essential. The identification of its short chromosome arms using conventional FISH probes is easy, but because of their similar hybridization patterns, its long arms cannot be distinguished. The present study aimed to create the detailed karyotype of ‘Kriszta’, especially that of long arms, by both chromosome measurements and FISH using highly repetitive, as well as subtelomeric tandem repeat, and synthetic microsatellite DNA sequences. Our results indicate that the chromosome complement of ‘Kriszta’ is not a simple combination of the chromosomes of the parental rye species but is composed of rearranged chromosomes. It is also showed that an adequate pair-wise combination of the DNA sequences pSc119.2, pSc200, pSc250, and (AAC)5 makes it possible to identify any of the long arms of S. cereanum cv. Kriszta chromosomes. The future usability of the identified wheat- ‘Kriszta’ translocated chromosomes is also discussed.


2021 ◽  
Author(s):  
Gerard Terradas ◽  
Jared B. Bennett ◽  
Zhiqian Li ◽  
John M. Marshall ◽  
Ethan Bier

AbstractGene-drive systems offer an important new avenue for spreading beneficial traits into wild populations. Their core components, Cas9 and guide RNA (gRNA), can either be linked within a single cassette (full gene drive, fGD) or provided in two separate elements (split gene drive, sGD) wherein the gRNA-bearing element drives in the presence of an independent static source of Cas9. We previously designed a system engineered to turn split into full gene drives. Here, we provide experimental proof-of-principle for such a convertible system inserted at the spo11 locus, which is recoded to restore gene function. In multigenerational cage studies, the reconstituted spo11 fGD cassette initially drives with slower kinetics than the unlinked sGD element (using the same Mendelian vasa-Cas9 source), but eventually reaches a similar level of final introgression. Different kinetic behaviors may result from transient fitness costs associated with individuals co-inheriting Cas9 and gRNA transgenes during the drive process.


Author(s):  
Gerard Terradas ◽  
Anita Hermann ◽  
Anthony A James ◽  
William McGinnis ◽  
Ethan Bier

Abstract Gene drives are programmable genetic elements that can spread beneficial traits into wild populations to aid in vector-borne pathogen control. Two different drives have been developed for population modification of mosquito vectors. The Reckh drive (vasa-Cas9) in Anopheles stephensi displays efficient allelic conversion through males but generates frequent drive-resistant mutant alleles when passed through females. In contrast, the AgNos-Cd1 drive (nos-Cas9) in An. gambiae achieves almost complete allelic conversion through both genders. Here, we examined the subcellular localization of RNA transcripts in the mosquito germline. In both transgenic lines, Cas9 is strictly co-expressed with endogenous genes in stem and pre-meiotic cells of the testes, where both drives display highly efficient conversion. However, we observed distinct co-localization patterns for the two drives in female reproductive tissues. These studies suggest potential determinants underlying efficient drive through the female germline. We also evaluated expression patterns of alternative germline genes for future gene-drive designs.


2021 ◽  
Vol 27 (1) ◽  
pp. 95-111
Author(s):  
Nino Giuliano Zulier

This paper seeks to investigate the digital transition from queer, physical spaces to queer, virtual spaces and its subcultural importance within the queer community. A trialectic spatiality approach (Lefebvre 1991; Soja 1996) will be applied to the cyberspace of Twitter in order to explore a particular subversion of a social media platform into a queer cyberspace through a user-established, unique, subcultural sign and code system. By researching the particular experiences of virtual, queer identities on Twitter, the social media platform is characterized as a thirdspace, using the example of ‘Gay Twitter’, conceived as a spatial phenomenon. The essay examines cultural semiotics and the ‘invisible,’ virtual confines of a queered Twitter realm by showcasing the linguistic, contextual and visual markers which create such an ‘imagined,’ exclusive, virtual Twitter community. Subsequently, the cyber-community creation and the establishment of norms and discourses reveal beneficial traits associated with a transition from physical to virtual spaces, but also negative aspects such as virtual gate-keeping, dominant gender and sexuality norms, internal discrimination and underrepresented groups and identities in a queer cyberspace.


2021 ◽  
Vol 288 (1960) ◽  
Author(s):  
Jie Hu ◽  
Tianjie Yang ◽  
Ville-Petri Friman ◽  
George A. Kowalchuk ◽  
Yann Hautier ◽  
...  

Plant growth depends on a range of functions provided by their associated rhizosphere microbiome, including nutrient mineralization, hormone co-regulation and pathogen suppression. Improving the ability of plant-associated microbiomes to deliver these functions is thus important for developing robust and sustainable crop production. However, it is yet unclear how beneficial effects of probiotic microbial inoculants can be optimized and how their effects are mediated. Here, we sought to enhance tomato plant growth by targeted introduction of probiotic bacterial consortia consisting of up to eight plant-associated Pseudomonas strains. We found that the effect of probiotic consortium inoculation was richness-dependent: consortia that contained more Pseudomonas strains reached higher densities in the tomato rhizosphere and had clearer beneficial effects on multiple plant growth characteristics. Crucially, these effects were best explained by changes in the resident community diversity, composition and increase in the relative abundance of initially rare taxa, instead of introduction of plant-beneficial traits into the existing community along with probiotic consortia. Together, our results suggest that beneficial effects of microbial introductions can be driven indirectly through effects on the diversity and composition of the resident plant rhizosphere microbiome.


2021 ◽  
Vol 9 (10) ◽  
pp. 2137
Author(s):  
Yang Zhou ◽  
Shuoxing Yi ◽  
Yi Zang ◽  
Qing Yao ◽  
Honghui Zhu

The application and promotion of biological control agents are limited because of poor efficacy and unstable performance in the field. Screening microorganisms with high antagonistic activity, effective adaptability, and high field-survival should be prospected. Myxobacteria are soil predatory bacteria with wide adaptability, which are considered as good antagonists. Here, we report a myxobacterium strain M34 isolated from subtropical forest soil in South China using the Escherichia coli baiting method. Based on the morphological observation, physiological test, biochemical characteristics, 16S rRNA gene sequence, and genomic data, strain M34 was identified as a novel genus and novel species, representing a new clade of Myxococcaceae, for which the name Citreicoccus inhibens gen. nov. sp. nov. is proposed (type strain M34T = GDMCC 1.2275T = KCTC 82453T). The typical features of M34, including fruiting body formation and extracellular fibrillar interconnection, indicated by microscopic observations, contributed to cell adaption in different environments. Furthermore, the strain showed antifungal activity against phytopathogenic fungi and predatory activity to both Gram-negative and Gram-positive phytopathogenic bacteria. The bioprotective mechanisms are attributed to the presence of pyrrolnitrin and derivative with antifungal activity and the extracellular proteins with lytic activity against pathogenic bacteria. Due to its multiple beneficial traits, strain M34 has the potential to be developed into a versatile biocontrol agent for the management of both fungal and bacterial phytopathogens.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Henriette Lyng Røder ◽  
Urvish Trivedi ◽  
Jakob Russel ◽  
Kasper Nørskov Kragh ◽  
Jakob Herschend ◽  
...  

AbstractPlasmids facilitate rapid bacterial adaptation by shuttling a wide variety of beneficial traits across microbial communities. However, under non-selective conditions, maintaining a plasmid can be costly to the host cell. Nonetheless, plasmids are ubiquitous in nature where bacteria adopt their dominant mode of life - biofilms. Here, we demonstrate that biofilms can act as spatiotemporal reserves for plasmids, allowing them to persist even under non-selective conditions. However, under these conditions, spatial stratification of plasmid-carrying cells may promote the dispersal of cells without plasmids, and biofilms may thus act as plasmid sinks.


2021 ◽  
Author(s):  
Jens Keilwagen ◽  
Heike Lehnert ◽  
Thomas Berner ◽  
Ekaterina Badaeva ◽  
Axel Himmelbach ◽  
...  

Abstract Introgressions from crop wild relatives (CWRs) have been used to introduce beneficial traits into cultivated plants. Introgressions have traditionally been detected using cytological methods. Recently, single nucleotide polymorphism (SNP)-based methods have been proposed to detect introgressions in crosses for which both parents are known. However, for unknown material, no method was available to detect introgressions and predict the putative donor species. Here, we present a method to detect introgressions and the putative donor species. We demonstrate the utility of this method using 10 publicly available wheat genome sequences and identify nine major introgressions. We show that the method can distinguish different introgressions at the same locus. We trace introgressions to early wheat cultivars and show that natural introgressions were utilised in early breeding history and still influence elite lines today. Finally, we provide evidence that these introgressions harbour resistance genes.


2021 ◽  
Vol 118 (38) ◽  
pp. e2101242118
Author(s):  
Samina Naseeb ◽  
Federico Visinoni ◽  
Yue Hu ◽  
Alex J. Hinks Roberts ◽  
Agnieszka Maslowska ◽  
...  

Hybrids between species can harbor a combination of beneficial traits from each parent and may exhibit hybrid vigor, more readily adapting to new harsher environments. Interspecies hybrids are also sterile and therefore an evolutionary dead end unless fertility is restored, usually via auto-polyploidisation events. In the Saccharomyces genus, hybrids are readily found in nature and in industrial settings, where they have adapted to severe fermentative conditions. Due to their hybrid sterility, the development of new commercial yeast strains has so far been primarily conducted via selection methods rather than via further breeding. In this study, we overcame infertility by creating tetraploid intermediates of Saccharomyces interspecies hybrids to allow continuous multigenerational breeding. We incorporated nuclear and mitochondrial genetic diversity within each parental species, allowing for quantitative genetic analysis of traits exhibited by the hybrids and for nuclear–mitochondrial interactions to be assessed. Using pooled F12 generation segregants of different hybrids with extreme phenotype distributions, we identified quantitative trait loci (QTLs) for tolerance to high and low temperatures, high sugar concentration, high ethanol concentration, and acetic acid levels. We identified QTLs that are species specific, that are shared between species, as well as hybrid specific, in which the variants do not exhibit phenotypic differences in the original parental species. Moreover, we could distinguish between mitochondria-type–dependent and –independent traits. This study tackles the complexity of the genetic interactions and traits in hybrid species, bringing hybrids into the realm of full genetic analysis of diploid species, and paves the road for the biotechnological exploitation of yeast biodiversity.


Author(s):  
Karolina Włodarczyk ◽  
Sylwia Wdowiak-Wróbel ◽  
Monika Marek-Kozaczuk ◽  
Jerzy Wielbo

Chamaecytisus albus (Spanish broom) is a legume shrub that can be found in only one natural locality in Poland. This specimen is critically endangered; therefore, different actions focusing on protection of this plant in the natural habitat are undertaken, and one of them involves studies of the population of Chamaecytisus albus bacterial endophytes, which in the future could be used as bioprotectants and/or biofertilizers. A collection of 94 isolates was obtained from Spanish broom nodules, and the physiological and genetic diversity of these strains was studied. A few potentially beneficial traits were detected, i.e. secretion of cellulases (66 isolates), production of siderophores (60 isolates), phosphate solubilization (25 isolates), and production of IAA (58 isolates), indole (16 isolates), or HCN (3 isolates). Twenty-nine of the 94 tested isolates were able to induce the development of root nodules in plants grown in vitro and can therefore be assumed as Chamaecytisus albus symbionts. Genome fingerprinting by BOX-PCR, as well as gyrB and nodZ gene sequencing revealed a great genetic diversity of specimens in the collection. The symbiotic isolates were classified in different clades, suggesting they could belong to different species, however, most of them revealed sequence similarity to Bradyrhizobium genus.


Sign in / Sign up

Export Citation Format

Share Document