crop improvement
Recently Published Documents


TOTAL DOCUMENTS

2426
(FIVE YEARS 1085)

H-INDEX

84
(FIVE YEARS 16)

2022 ◽  
Vol 12 ◽  
Author(s):  
Carolina Ballén-Taborda ◽  
Ye Chu ◽  
Peggy Ozias-Akins ◽  
C. Corley Holbrook ◽  
Patricia Timper ◽  
...  

Crop wild species are increasingly important for crop improvement. Peanut (Arachis hypogaea L.) wild relatives comprise a diverse genetic pool that is being used to broaden its narrow genetic base. Peanut is an allotetraploid species extremely susceptible to peanut root-knot nematode (PRKN) Meloidogyne arenaria. Current resistant cultivars rely on a single introgression for PRKN resistance incorporated from the wild relative Arachis cardenasii, which could be overcome as a result of the emergence of virulent nematode populations. Therefore, new sources of resistance may be needed. Near-immunity has been found in the peanut wild relative Arachis stenosperma. The two loci controlling the resistance, present on chromosomes A02 and A09, have been validated in tetraploid lines and have been shown to reduce nematode reproduction by up to 98%. To incorporate these new resistance QTL into cultivated peanut, we used a marker-assisted backcrossing approach, using PRKN A. stenosperma-derived resistant lines as donor parents. Four cycles of backcrossing were completed, and SNP assays linked to the QTL were used for foreground selection. In each backcross generation seed weight, length, and width were measured, and based on a statistical analysis we observed that only one generation of backcrossing was required to recover the elite peanut’s seed size. A populating of 271 BC3F1 lines was genome-wide genotyped to characterize the introgressions across the genome. Phenotypic information for leaf spot incidence and domestication traits (seed size, fertility, plant architecture, and flower color) were recorded. Correlations between the wild introgressions in different chromosomes and the phenotypic data allowed us to identify candidate regions controlling these domestication traits. Finally, PRKN resistance was validated in BC3F3 lines. We observed that the QTL in A02 and/or large introgression in A09 are needed for resistance. This present work represents an important step toward the development of new high-yielding and nematode-resistant peanut cultivars.


2022 ◽  
Vol 12 ◽  
Author(s):  
David Navarro-Payá ◽  
Antonio Santiago ◽  
Luis Orduña ◽  
Chen Zhang ◽  
Alessandra Amato ◽  
...  

Effective crop improvement, whether through selective breeding or biotech strategies, is largely dependent on the cumulative knowledge of a species’ pangenome and its containing genes. Acquiring this knowledge is specially challenging in grapevine, one of the oldest fruit crops grown worldwide, which is known to have more than 30,000 genes. Well-established research communities studying model organisms have created and maintained, through public and private funds, a diverse range of online tools and databases serving as repositories of genomes and gene function data. The lack of such resources for the non-model, but economically important, Vitis vinifera species has driven the need for a standardised collection of genes within the grapevine community. In an effort led by the Integrape COST Action CA17111, we have recently developed the first grape gene reference catalogue, where genes are ascribed to functional data, including their accession identifiers from different genome-annotation versions (https://integrape.eu/resources/genes-genomes/). We present and discuss this gene repository together with a validation-level scheme based on varied supporting evidence found in current literature. The catalogue structure and online submission form provided permits community curation. Finally, we present the Gene Cards tool, developed within the Vitis Visualization (VitViz) platform, to visualize the data collected in the catalogue and link gene function with tissue-specific expression derived from public transcriptomic data. This perspective article aims to present these resources to the community as well as highlight their potential use, in particular for plant-breeding applications.


Author(s):  
Shivani Sharma ◽  
Amit Kumar ◽  
Priyanka Dhakte ◽  
Gaurav Raturi ◽  
Gautam Vishwakarma ◽  
...  
Keyword(s):  

2022 ◽  
Author(s):  
Shruthy Priya Prakash ◽  
Vaidheki Chandrasekar ◽  
Selvi Subramanian ◽  
Rahamatthunnisha Ummar

Banana being a major food crop all around the world, attracts various research interests in crop improvement. In banana, complete genome sequences of Musa accuminata and Musa balbisiana are available. However, the mitochondrial genome is not sequenced or assembled. Mitochondrial (mt) genes play an important role in flower and seed development and in Cytoplasmic Male Sterility. Unraveling banana mt genome architecture will be a foundation for understanding inheritance of traits and their evolution. In this study, the complete banana mt genome is assembled from the whole genome sequence data of the Musa acuminata subsp. malaccensis DH-Pahang. The mt genome sequence acquired by this approach was 409574 bp and it contains, 54 genes coding for 25 respiratory complex proteins 15 ribosomal proteins, 12 tRNA genes and two ribosomal RNA gene. Except atpB, rps11 and rps19 other genes are in multiple copies. The copy number is 12 in tRNA genes. In addition, nearly 25% tandem repeats are also present in it. These mt proteins are identical to the mt proteins present in the other members of AA genome and share 98% sequence similarity with M. balbisiana. The C to U RNA editing is profoundly higher (87 vs 13%) in transcripts of M. balbisiana (BB) compared to M. accuminata (AA). The banana AA mitochondrial genome is tightly packed with 233 genes, with less rearrangements and just 5.3% chloroplast DNA in it. The maintenance of high copy number of functional mt genes suggest that they have a crucial role in the evolution of banana.


2022 ◽  
Vol 23 (2) ◽  
pp. 824
Author(s):  
Peiwen Yan ◽  
Yu Zhu ◽  
Ying Wang ◽  
Fuying Ma ◽  
Dengyong Lan ◽  
...  

Developing methods for increasing the biomass and improving the plant architecture is important for crop improvement. We herein describe a gene belonging to the RING_Ubox (RING (Really Interesting New Gene) finger domain and U-box domain) superfamily, PLANT ARCHITECTURE and GRAIN NUMBER 1 (PAGN1), which regulates the number of grains per panicle, the plant height, and the number of tillers. We used the CRISPR/Cas9 system to introduce loss-of-function mutations to OsPAGN1. Compared with the control plants, the resulting pagn1 mutant plants had a higher grain yield because of increases in the plant height and in the number of tillers and grains per panicle. Thus, OsPAGN1 may be useful for the genetic improvement of plant architecture and yield. An examination of evolutionary relationships revealed that OsPAGN1 is highly conserved in rice. We demonstrated that OsPAGN1 can interact directly with OsCNR10 (CELL NUMBER REGULATOR10), which negatively regulates the number of rice grains per panicle. A transcriptome analysis indicated that silencing OsPAGN1 affects the levels of active cytokinins in rice. Therefore, our findings have clarified the OsPAGN1 functions related to rice growth and grain development.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 179
Author(s):  
Tanika Thakur ◽  
Kshitija Sinha ◽  
Tushpinder Kaur ◽  
Ritu Kapoor ◽  
Gulshan Kumar ◽  
...  

Rice is a staple food crop for almost half of the world’s population, especially in the developing countries of Asia and Africa. It is widely grown in different climatic conditions, depending on the quality of the water, soil, and genetic makeup of the rice cultivar. Many (a)biotic stresses severely curtail rice growth and development, with an eventual reduction in crop yield. However, for molecular functional analysis, the availability of an efficient genetic transformation protocol is essential. To ensure food security and safety for the continuously increasing global population, the development of climate-resilient crops is crucial. Here, in this study, the rice transformation protocol has been effectively optimized for the efficient and rapid generation of rice transgenic plants. We also highlighted the critical steps and precautionary measures to be taken while performing the rice transformation. We further assess the efficacy of this protocol by transforming rice with two different transformation constructs for generating galactinol synthase (GolS) overexpression lines and CRISPR/Cas9-mediated edited lines of lipase (Lip) encoding the OsLip1 gene. The putative transformants were subjected to molecular analysis to confirm gene integration/editing, respectively. Collectively, the easy, efficient, and rapid rice transformation protocol used in this present study can be applied as a potential tool for gene(s) function studies in rice and eventually to the rice crop improvement.


2022 ◽  
Vol 2 (1) ◽  
Author(s):  
Yasin Topcu ◽  
Savithri U. Nambeesan ◽  
Esther van der Knaap

AbstractBlossom-end rot (BER) is a devastating physiological disorder affecting vegetable production worldwide. Extensive research into the physiological aspects of the disorder has demonstrated that the underlying causes of BER are associated with perturbed calcium (Ca2+) homeostasis and irregular watering conditions in predominantly cultivated accessions. Further, Reactive Oxygen Species (ROS) are critical players in BER development which, combined with unbalanced Ca2+ concentrations, greatly affect the severity of the disorder. The availability of a high-quality reference tomato genome as well as the whole genome resequencing of many accessions has recently permitted the genetic dissection of BER in segregating populations derived from crosses between cultivated tomato accessions. This has led to the identification of five loci contributing to BER from several studies. The eventual cloning of the genes contributing to BER would result in a deeper understanding of the molecular bases of the disorder. This will undoubtedly create crop improvement strategies for tomato as well as many other vegetables that suffer from BER.


2022 ◽  
Vol 12 ◽  
Author(s):  
Alok Sharma ◽  
Himanshu Sharma ◽  
Ruchika Rajput ◽  
Ashutosh Pandey ◽  
Santosh Kumar Upadhyay

Thaumatin-like proteins (TLPs) are related to pathogenesis-related-5 (PR-5) family and involved in stress response. Herein, a total of 93 TLP genes were identified in the genome of Triticum aestivum. Further, we identified 26, 27, 39, and 37 TLP genes in the Brachypodium distachyon, Oryza sativa, Sorghum bicolor, and Zea mays genomes for comparative characterization, respectively. They could be grouped into small and long TLPs with conserved thaumatin signature motif. Tightly clustered genes exhibited conserved gene and protein structure. The physicochemical analyses suggested significant differences between small and long TLPs. Evolutionary analyses suggested the role of duplication events and purifying selection in the expansion of the TLP gene family. Expression analyses revealed the possible roles of TLPs in plant development and abiotic and fungal stress response. Recombinant expression of TaTLP2-B in Saccharomyces cerevisiae provided significant tolerance against cold, heat, osmotic, and salt stresses. The results depicted the importance of TLPs in cereal crops that would be highly useful in future crop improvement programs.


2022 ◽  
Author(s):  
E LAMALAKSHMI DEVI ◽  
Umakanta Ngangkham ◽  
Akoijam Ratankumar Singh ◽  
Bhuvaneswari S ◽  
Konsam Sarika ◽  
...  

Abstract North- Eastern parts of India fall under the Eastern Himalayan region and it is a diversity hotspot of many crops, including maize. Maize is an important traditional cereal crop grown in hill ecology of the region mainly for food, fodder and feed. To tap the potentiality of maize genetic resources in crop improvement programmes, assessment of genetic diversity is a basic requirement. Hence, in the present study, assessment of genetic diversity in thirty early generation maize inbreds developed from different germplasm of NE India was taken up using genome wide distributed fifty two microsatellite markers. The marker analysis revealed a large variation with a total of 189 alleles with an average of 3.63 alleles per marker locus. The allele size ranged from 50 bp ( phi 036 ) to 295 bp ( p 101049 ) which revealed a high level of genetic diversity among the loci. The PIC value ranged from 0.17 ( umc 1622 ) to 0.76 ( umc 1153 ) with an average value of 0.49. The value of expected Heterozygosity (H Exp ) ranged from 0.19 to 0.80 with an average of 0.57, whereas the Observed Heterozygosity (H Obs ) ranged from 0 to 0.89 with a mean of 0.14.The genetic dissimilarity between the genotype pairs ranged from 0.40 to 0.64 with a mean value of 0.57. Cluster analysis resolved the inbreds into three distinct sub-clusters. Similarly, population structure analysis also classified the inbred lines into three-subpopulations. Marker-trait associations showed a total of twelve SSR markers significantly associated with seven agronomic traits. From the present study, wide genetic variability was found among the maize inbreds with high potential to contribute new beneficial and unique alleles in genetic enhancement program of maize in India and particularly, in NE region.


Diversity ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 44
Author(s):  
Swati Shrestha ◽  
Gourav Sharma ◽  
Shandrea Stallworth ◽  
Edilberto D. Redona ◽  
Te Ming Tseng

Increasing agricultural productivity is indispensable to meet future food demand. Crop improvement programs rely heavily on genetic diversity. The success of weeds in the ecosystem can be attributed to genetic diversity and plasticity. Weedy rice, a major weed of rice, has diverse morphology and phenology, implying wide genetic diversity. Study was conducted to genotype weedy rice accessions (n = 54) previously phenotyped for herbicide tolerance and allelopathic potential using 30 SSR markers. Cultivated rice (CL163, REX) and allelopathic rice (RONDO, PI312777, PI338047) were also included in the study. Nei’s genetic diversity among weedy rice (0.45) was found to be higher than cultivated rice (0.24) but less than allelopathic rice (0.56). The genetic relationship and population structure based on herbicide tolerance and allelopathic potential were evaluated. Herbicide-tolerant and susceptible accessions formed distinct clusters in the dendrogram, indicating their genetic variation, whereas no distinction was observed between allelopathic and non-allelopathic weedy rice accessions. Weedy rice accession B2, which was previously reported to have high allelopathy and herbicide tolerance, was genetically distinct from other weedy rice. Results from the study will help leverage weedy rice for rice improvement programs as both rice and weedy rice are closely related, thus having a low breeding barrier.


Sign in / Sign up

Export Citation Format

Share Document