model plant arabidopsis thaliana
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 76)

H-INDEX

26
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Baskar Ramamurthy ◽  
Shashi Bhushan ◽  
Amit Kumar Singh ◽  
Yogendra Thakur

In the model plant Arabidopsis thaliana, parental age is known to affect somatic mutation rates in their immediate progeny but it is not clear if this age-associated effect on mutation rates persist across successive generations. Using a set of detector lines carrying the mutated uidA gene, we examined if a particular parental age maintained across five consecutive generations affected the rates of base substitution (BSR), intrachromosomal recombination (ICR), frameshift mutation (FS), and transposition. The frequency of functional GUS (blue colored spots) reversions were examined in seedlings as a function of identical/different parental ages across generations. When parental age remained constant, no change was observed in BSR/ICR rates in the first three generations, following which it drops significantly in the 4th and in most instances, is elevated in the 5th generation. On the other hand, with advancing parental age, BSR/ICR rates respectively remained high in the first two/three generations with a striking resemblance in the pattern of mutation rates. We followed a novel approach of identifying and tagging flowers pollinated on a particular day, thereby avoiding possible emasculation induced stress responses, as it may influence mutation rates. By and large there is no correlation in the expression of candidate genes involved in DNA repair to the pattern of reversion events and possibly, the expression patterns may correspond to the genomewide somatic mutations rates. Our results suggest a time component in counting the number of generations a plant has passed through self-fertilization at a particular age in determining the somatic mutation rates.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 188
Author(s):  
Gardette R. Valmonte-Cortes ◽  
Sonia T. Lilly ◽  
Michael N. Pearson ◽  
Colleen M. Higgins ◽  
Robin M. MacDiarmid

To our knowledge, there are no reports that demonstrate the use of host molecular markers for the purpose of detecting generic plant virus infection. Two approaches involving molecular indicators of virus infection in the model plant Arabidopsis thaliana were examined: the accumulation of small RNAs (sRNAs) using a microfluidics-based method (Bioanalyzer); and the transcript accumulation of virus-response related host plant genes, suppressor of gene silencing 3 (AtSGS3) and calcium-dependent protein kinase 3 (AtCPK3) by reverse transcriptase-quantitative PCR (RT-qPCR). The microfluidics approach using sRNA chips has previously demonstrated good linearity and good reproducibility, both within and between chips. Good limits of detection have been demonstrated from two-fold 10-point serial dilution regression to 0.1 ng of RNA. The ratio of small RNA (sRNA) to ribosomal RNA (rRNA), as a proportion of averaged mock-inoculation, correlated with known virus infection to a high degree of certainty. AtSGS3 transcript decreased between 14- and 28-days post inoculation (dpi) for all viruses investigated, while AtCPK3 transcript increased between 14 and 28 dpi for all viruses. A combination of these two molecular approaches may be useful for assessment of virus-infection of samples without the need for diagnosis of specific virus infection.


2021 ◽  
Vol 4 (4) ◽  
pp. 84
Author(s):  
Cesar Flores-Herrera ◽  
Emilia R. Gutiérrez-Mireles ◽  
Manuel Gutiérrez-Aguilar

Plant leaves present an intricate array of layers providing a robust barrier against pathogens and abiotic stressors. However, these layers may also constitute an obstacle for the assessment of intracellular processes, especially when using fluorescence microscopy approaches. Current methods for leaf mitochondrial membrane potential determinations have been traditionally performed in thin mesophyll sections, in isolated protoplasts or in fluorescent protein-expressing transgenic plants. This may limit the amount of information obtained about overall mitochondrial morphology in intact leaves. Here, we detail a fast and straightforward protocol to assess changes in leaf mitochondrial membrane potential associated with mitochondrial dysfunction in the model plant Arabidopsis thaliana. This protocol also permits mitochondrial shape, dynamics and polarity assessment in leaves subjected to diverse stress conditions.


2021 ◽  
Author(s):  
Vit Latzel ◽  
Markus Fischer ◽  
Maartje Groot ◽  
Ruben Gutzat ◽  
Christian Lampei ◽  
...  

The phenotypes of plants can be influenced by the environmental conditions experienced by their parents. In some cases, such parental effects have been found to be adaptive, which has led to much speculation about their ecological and evolutionary significance. However, there is still much uncertainty about how common and how predictable parental environmental effects really are. We carried out a comprehensive test for parental effects of different environmental stresses in the model plant Arabidopsis thaliana. We subjected plants of three Arabidopsis genotypes to a broad range of biotic or abiotic stresses, or combinations thereof, and compared their offspring phenotypes in a common environment. The majority of environmental stresses (16 out of 24 stress treatments) caused significant parental effects, in particular on plant biomass and reproduction, with positive or negative effects ranging from 35% to +38% changes in offspring fitness. The expression of parental effects was strongly genotype-dependent, with some effects only present in some genotypes but absent, or even in the opposite direction, in others. Parental effects of multiple environmental stresses were often non-additive, and their effects can thus not be predicted from what we know about the effects of individual stresses. Intriguingly, the direction and magnitude of parental effects were unrelated to the direct effects on the parents: some stresses did not affect the parents but caused substantial effects on offspring, while for others the situation was reversed. In summary, parental environmental effects are common and often strong in A. thaliana, but they are genotype-dependent and difficult to predict.


2021 ◽  
Author(s):  
Erica H Lawrence ◽  
R. Scott Poethig ◽  
Jesse Lasky

Phenotypic plasticity allows organisms to optimize traits for their environment. As organisms age, they experience diverse environments that merit varying degrees of phenotypic plasticity. Developmental transitions can control these age-dependent changes in plasticity and as such, the timing of these transitions can determine when plasticity changes in an organism. Here we investigate how the transition from juvenile-to adult-vegetative development known as vegetative phase change (VPC) contributes to age-dependent changes in phenotypic plasticity using both natural accessions and mutant lines in the model plant Arabidopsis thaliana. Further, we look at how the timing of this transition and the concordant shifts in plasticity change across accessions and environments. We found that the adult phase of vegetative development has greater plasticity than the juvenile phase and confirmed that this difference in plasticity is caused by VPC using mutant lines. Further, we found that the timing of VPC, and therefore the time when increased plasticity is acquired, varies significantly across genotypes and environments. This genetic and environmental variation in the timing of VPC indicates the potential for population-level adaptive evolution of VPC. The consistent age-dependent changes in plasticity caused by VPC add further support to the hypothesis that VPC is adaptive.


2021 ◽  
Author(s):  
Todd P Michael

The circadian clock ensures that biological processes are phased to the correct time of day. In plants the circadian clock is conserved at both the level of transcriptional networks as well as core genes. In the model plant Arabidopsis thaliana, the core circadian singleMYB (sMYB) genes CCA1 and RVE4 are in genetic linkage with the PSEUDO-RESPONSE REGULATOR (PRR) genes PRR9 and PRR7 respectively. Leveraging chromosome-resolved plant genomes and syntenic ortholog analysis it was possible to trace this genetic linkage back to the basal angiosperm Amborella and identify an additional evolutionarily conserved genetic linkage between PIF3 and PHYA. The LHY/CCA1-PRR5/9, RVE4/8-PRR3/7 and PIF3-PHYA genetic linkages emerged in the bryophyte lineage and progressively moved within several genes of each other across an array of higher plant families representing distinct whole genome duplication and fractionation events. Soybean maintains all but two genetic linkages, and expression analysis revealed the PIF3-PHYA linkage overlapping with the E4 maturity group locus was the only pair to robustly cycle with an evening phase in contrast to the sMYB-PRR morning and midday phase. While most monocots maintain the genetic linkages, they have been lost in the economically important grasses (Poaceae) such as maize where the genes have been fractionated to separate chromosomes and presence/absence variation results in the segregation of PRR7 paralogs across heterotic groups. The evolutionary conservation of the genetic linkage as well as its loss in the grasses provides new insight in the plant circadian clock, which has been a critical target of breeding and domestication.


Author(s):  
Adil Altaf ◽  
Ahmad Zada

Common DNA methylation controls gene expression and preserves genomic integrity. Mal methylation can cause developmental abnormalities in the plants. Multiple enzymes carrying out de novo methylation, methylation maintenance, and active demethylation culminate in a particular DNA methylation state. Next-generation sequencing advances and computational methods to analyze the data. The model plant Arabidopsis thaliana was used to study DNA methylation patterns, epigenetic inheritance, and plant methylation. Plant DNA methylation research reveals methylation patterns and describing variations in plant tissues. Determining the kinetics of DNA methylation in diverse plant tissues is also a new field. However, it is vital to understand regulatory and developmental decisions and use plant model species to develop new commercial crops; that are more resistant to stress and yield more. There are several methods available for assessing DNA methylation data. The performance of several techniques is assessed in A. thaliana, which has a smaller genome than hexaploid bread wheat. Keywords: DNA methylation, plants, process, use and benefits


2021 ◽  
Author(s):  
Franziska Fichtner ◽  
Francois F Barbier ◽  
Stephanie C Kerr ◽  
Caitlin Dudley ◽  
Pilar Cubas ◽  
...  

Shoot branching is a complex mechanism in which secondary shoots grow from buds that are initiated from meristems established in leaf axils. The model plant Arabidopsis thaliana has a rosette leaf growth pattern in the vegetative stage. After flowering initiation, the main stem starts to elongate with the top leaf primordia developing into cauline leaves. Meristems in arabidopsis are initiated in the axils of rosette or cauline leaves, giving rise to rosette or cauline buds, respectively. Plasticity in the process of shoot branching is regulated by resource and nutrient availability as well as by plant hormones. However, few studies have attempted to test whether cauline and rosette branching are subject to the same plasticity. Here, we addressed this question by phenotyping cauline and rosette branching in three arabidopsis ecotypes and several arabidopsis mutants with varied shoot architectures. Our results show that there is no negative correlation between cauline and rosette branch numbers in arabidopsis, demonstrating that there is no trade-off between cauline and rosette bud outgrowth. Through investigation of the altered branching pattern of flowering pathway mutants and arabidopsis ecotypes grown in various photoperiods and light regimes, we further elucidated that the number of cauline branches is closely related to flowering time. The number or rosette branches has an enormous plasticity compared with cauline branches and is influenced by genetic background, flowering time, light intensity and temperature. Our data reveal different plasticity in the regulation of branching at rosette and cauline nodes and promote a framework for future branching analyses.


2021 ◽  
Vol 9 (3) ◽  
pp. 109-114
Author(s):  
Adil Altaf ◽  
Ahmad Zada

Common DNA methylation controls gene expression and preserves genomic integrity. Mal methylation can cause developmental abnormalities in the plants. Multiple enzymes carrying out de novo methylation, methylation maintenance, and active demethylation culminate in a particular DNA methylation state. Next-generation sequencing advances and computational methods to analyze the data. The model plant Arabidopsis thaliana was used to study DNA methylation patterns, epigenetic inheritance, and plant methylation. Plant DNA methylation research reveals methylation patterns and describing variations in plant tissues. Determining the kinetics of DNA methylation in diverse plant tissues is also a new field. However, it is vital to understand regulatory and developmental decisions and use plant model species to develop new commercial crops; that are more resistant to stress and yield more. There are several methods available for assessing DNA methylation data. The performance of several techniques is assessed in A. thaliana, which has a smaller genome than hexaploid bread wheat. Keywords: DNA methylation, plants, process, use and benefits.


Author(s):  
Cristián Jacob ◽  
André C Velásquez ◽  
Nikhil A Josh ◽  
Matthew Settles ◽  
Sheng Yang He ◽  
...  

Abstract Understanding the molecular determinants underlying the interaction between the leaf and human pathogenic bacteria is key to provide the foundation to develop science-based strategies to prevent or decrease the pathogen contamination of leafy greens. In this study, we conducted a dual RNA-sequencing analysis to simultaneously define changes in the transcriptomic profiles of the plant and the bacterium when they come in contact. We used an economically relevant vegetable crop, lettuce (Lactuca sativa L. cultivar Salinas), and a model plant, Arabidopsis thaliana Col-0, as well as two pathogenic bacterial strains that cause disease outbreaks associated with fresh produce, Escherichia coli O157: H7 and Salmonella enterica serovar Typhimurium 14028 s (STm 14028 s). We observed commonalities and specificities in the modulation of biological processes between Arabidopsis and lettuce and between O157: H7 and STm 14028 s during early stages of the interaction. We detected a larger alteration of gene expression at the whole transcriptome level in lettuce and Arabidopsis at 24 hours post inoculation with STm 14028 s compared to that with O157: H7. In addition, bacterial transcriptomic adjustments were substantially larger in Arabidopsis than in lettuce. Bacterial transcriptome was affected at a larger extent in the first 4 hours compared to the subsequent 20 hours after inoculation. Overall, we gained valuable knowledge about the responses and counter-responses of both bacterial pathogen and plant host when these bacteria are residing in the leaf intercellular space. These findings and the public genomic resources generated in this study are valuable for additional data mining.


Sign in / Sign up

Export Citation Format

Share Document