In Vivo Mapping and Quantification of Creatine Using Chemical Exchange Saturation Transfer Imaging in Rat Models of Epileptic Seizure

2018 ◽  
Vol 21 (2) ◽  
pp. 232-239 ◽  
Author(s):  
Dong-Hoon Lee ◽  
Do-Wan Lee ◽  
Jae-Im Kwon ◽  
Chul-Woong Woo ◽  
Sang-Tae Kim ◽  
...  
2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Yanlong Jia ◽  
Chaochao Wang ◽  
Jiehua Zheng ◽  
Guisen Lin ◽  
Dalong Ni ◽  
...  

Abstract Background Nanomedicine is a promising new approach to cancer treatment that avoids the disadvantages of traditional chemotherapy and improves therapeutic indices. However, the lack of a real-time visualization imaging technology to monitor drug distribution greatly limits its clinical application. Image-tracked drug delivery is of great clinical interest; it is useful for identifying those patients for whom the therapy is more likely to be beneficial. This paper discusses a novel nanomedicine that displays features of nanoparticles and facilitates functional magnetic resonance imaging but is challenging to prepare. Results To achieve this goal, we synthesized an acylamino-containing amphiphilic block copolymer (polyethylene glycol-polyacrylamide-polyacetonitrile, PEG-b-P(AM-co-AN)) by reversible addition-fragmentation chain transfer (RAFT) polymerization. The PEG-b-P(AM-co-AN) has chemical exchange saturation transfer (CEST) effects, which enable the use of CEST imaging for monitoring nanocarrier accumulation and providing molecular information of pathological tissues. Based on PEG-b-P(AM-co-AN), a new nanomedicine PEG-PAM-PAN@DOX was constructed by nano-precipitation. The self-assembling nature of PEG-PAM-PAN@DOX made the synthesis effective, straightforward, and biocompatible. In vitro studies demonstrate decreased cytotoxicity of PEG-PAM-PAN@DOX compared to free doxorubicin (half-maximal inhibitory concentration (IC50), mean ~ 0.62 μg/mL vs. ~ 5 μg/mL), and the nanomedicine more efficiently entered the cytoplasm and nucleus of cancer cells to kill them. Further, in vivo animal experiments showed that the nanomedicine developed was not only effective against breast cancer, but also displayed an excellent sensitive CEST effect for monitoring drug accumulation (at about 0.5 ppm) in tumor areas. The CEST signal of post-injection 2 h was significantly higher than that of pre-injection (2.17 ± 0.88% vs. 0. 09 ± 0.75%, p < 0.01). Conclusions The nanomedicine with CEST imaging reflects the characterization of tumors and therapeutic functions has great potential medical applications.


2013 ◽  
Vol 71 (1) ◽  
pp. 164-172 ◽  
Author(s):  
Feliks Kogan ◽  
Mohammad Haris ◽  
Anup Singh ◽  
Kejia Cai ◽  
Catherine Debrosse ◽  
...  

2011 ◽  
Vol 67 (4) ◽  
pp. 1106-1113 ◽  
Author(s):  
Guanshu Liu ◽  
Matthew Moake ◽  
Yah-el Har-el ◽  
Chris M. Long ◽  
Kannie W.Y. Chan ◽  
...  

2017 ◽  
Vol 57 (9) ◽  
pp. 809-824 ◽  
Author(s):  
Yang Ji ◽  
Iris Yuwen Zhou ◽  
Bensheng Qiu ◽  
Phillip Zhe Sun

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Catherine DeBrosse ◽  
Ravi Prakash Reddy Nanga ◽  
Puneet Bagga ◽  
Kavindra Nath ◽  
Mohammad Haris ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document