Interference of an atrazine commercial formulation with the endocrine control of ovarian growth exerted by the eyestalks

2019 ◽  
Vol 27 (1) ◽  
pp. 965-973 ◽  
Author(s):  
Gabriela R. Silveyra ◽  
Ivana S. Canosa ◽  
Marina Zanitti ◽  
Enrique M. Rodríguez ◽  
Daniel A. Medesani
2004 ◽  
Vol 69 (2) ◽  
pp. 165-174 ◽  
Author(s):  
Daniel Alberto Medesani ◽  
Laura Susana López Greco ◽  
Enrique Marcelo Rodrı́guez

1965 ◽  
Vol 49 (3_Suppl) ◽  
pp. S202
Author(s):  
L. Ph. Bengtsson ◽  
G. W. Theobald

1972 ◽  
Vol 70 (2) ◽  
pp. 396-408 ◽  
Author(s):  
K.-D. Schulz ◽  
H. Haarmann ◽  
A. Harland

ABSTRACT The present investigation deals with the oestrogen-sensitivity of the female reproductive system during the neonatal period. Newborn female guinea pigs were used as test animals. At different times after a single subcutaneous injection of a physiological dose of 0.1 μg or an unphysiologically high dose of 10 μg 17β-oestradiol/100 g body weight, the RNA- and protein-synthesis was examined in the hypothalamic region, pituitary, cerebral cortex, liver, adrenal gland, ovary and uterus. With a physiological dose an increase in organ weight, protein content, RNA-and protein-synthesis was found only in the uterus. These alterations turned out to be dose-dependent. In addition to the findings in the uterus an inhibition of the aminoacid incorporation rate occurred in the liver following the injection of the high oestradiol dose. As early as 1 hour after the administration of 0.1 μg 17β-oestradiol an almost 100% increase in uterine protein synthesis was detectable. This result demonstrates a high oestrogen-sensitivity of this organ during the neonatal period. All the other organs of the female reproductive system such as the hypothalamus, pituitary and ovary did not show any oestrogen response. Therefore the functional immaturity of the uterus during post partem life is not the result of a deficient hormone sensitivity but is correlated with the absence of a sufficient hormonal stimulus at this time. The investigation on the effects of actinomycin resulted in different reactions in the uterus and liver. In contrast to the liver a paradoxical actinomycin effect was found in the uterus after treatment with actinomycin alone. This effect is characterized by a small inhibition of RNA-synthesis and a 50% increase in protein synthesis. The treatment of the newborn test animals with actinomycin and 17β-oestradiol together abolished the oestrogen-induced stimulation of the uterine RNA-and protein-synthesis. Consequently, the effect of oestrogens during the neonatal period is also connected with the formation of new proteins via an increased DNA-directed RNA-synthesis.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 517a-517
Author(s):  
Eric L. Zeldin ◽  
Rodney A. Serres ◽  
Brent H. McCown

`Stevens' cranberry was genetically engineered to confer tolerance to the broad spectrum herbicide glufosinate. Initially, herbicide tolerance was verified by spraying greenhouse plants with the commercial formulation Liberty. Although one transformant showed significant tolerance, the tolerance level was below that required to kill goldenrod, a common weed of cranberry beds. This transformant was propagated and the plants established outdoors in a coldframe, yielding a growth form more typical of field-grown plants than that of greenhouse-grown plants. These plants, as well as untransformed cranberry and goldenrod plants, were sprayed with various levels of the herbicide. The transformed plants were not killed at glufosinate concentrations up to 1000 ppm, although delayed growth did occur. Some runner tip injury was observed at 500 ppm as well as widespread shoot tip death at higher levels. The above-ground parts of goldenrod plants were killed at 400 ppm with significant injury at 200 ppm. Untransformed cranberry plants were killed at 300 ppm and had extensive tip death even at 100 ppm. Transformed cranberry plants with confirmed “field” tolerance were re-established in the greenhouse and new vegetative growth was forced. When these plants were sprayed with glufosinate, significant shoot tip injury was observed at levels as low as 100 ppm. The degree of herbicide tolerance of transformed cranberry appears to be modulated by the growth environment, which may affect the expression of the inserted genes or the physiological sensitivity of the impacted tissues.


1951 ◽  
Vol 109 (1) ◽  
pp. 41-69 ◽  
Author(s):  
Joseph D. Feldman

Sign in / Sign up

Export Citation Format

Share Document