Updatable Identity-Based Hash Proof System Based on Lattices and Its Application to Leakage-Resilient Public-Key Encryption Schemes

2018 ◽  
Vol 33 (6) ◽  
pp. 1243-1260
Author(s):  
Qi-Qi Lai ◽  
Bo Yang ◽  
Yong Yu ◽  
Zhe Xia ◽  
Yan-Wei Zhou ◽  
...  
2001 ◽  
Vol 8 (37) ◽  
Author(s):  
Ronald Cramer ◽  
Victor Shoup

We present several new and fairly practical public-key encryption schemes and prove them secure against adaptive chosen ciphertext attack. One scheme is based on Paillier's Decision Composite Residuosity (DCR) assumption, while another is based in the classical Quadratic Residuosity (QR) assumption. The analysis is in the standard cryptographic model, i.e., the security of our schemes does not rely on the Random Oracle model.<br /> <br />We also introduce the notion of a universal hash proof system. Essentially, this is a special kind of non-interactive zero-knowledge proof system for an NP language. We do not show that universal hash proof systems exist for all NP languages, but we do show how to construct very efficient universal hash proof systems for a general class of group-theoretic language membership problems.<br /> <br />Given an efficient universal hash proof system for a language with certain natural cryptographic indistinguishability properties, we show how to construct an efficient public-key encryption schemes secure against adaptive chosen ciphertext attack in the standard model. Our construction only uses the universal hash proof system as a primitive: no other primitives are required, although even more efficient encryption schemes can be obtained by using hash functions with appropriate collision-resistance properties. We show how to construct efficient universal hash proof systems for languages related to the DCR and QR assumptions. From these we get corresponding public-key encryption schemes that are secure under these assumptions. We also show that the Cramer-Shoup encryption scheme (which up until now was the only practical encryption scheme that could be proved secure against adaptive chosen ciphertext attack under a reasonable assumption, namely, the Decision Diffie-Hellman assumption) is also a special case of our general theory.


2015 ◽  
Vol 7 (3/4) ◽  
pp. 216
Author(s):  
Chengyu Hu ◽  
Zuoxia Yu ◽  
Rupeng Yang ◽  
Qiuliang Xu ◽  
Yongbin Zhou ◽  
...  

2020 ◽  
Vol 63 (12) ◽  
pp. 1904-1914
Author(s):  
Janaka Alawatugoda

Abstract Over the years, security against adaptively chosen-ciphertext attacks (CCA2) is considered as the strongest security definition for public-key encryption schemes. With the uprise of side-channel attacks, new security definitions are proposed, addressing leakage of secret keys together with the standard CCA2 definition. Among the new security definitions, security against continuous and after-the-fact leakage-resilient CCA2 can be considered as the strongest security definition, which is called as security against (continuous) adaptively chosen-ciphertext leakage attacks (continuous CCLA2). In this paper, we present a construction of a public-key encryption scheme, namely LR-PKE, which satisfies the aforementioned security definition. The security of our public-key encryption scheme is proven in the standard model, under decision BDH assumption. Thus, we emphasize that our public-key encryption scheme LR-PKE is (continuous) CCLA2-secure in the standard model. For our construction of LR-PKE, we have used a strong one-time signature scheme and a leakage-resilient refreshing protocol as underlying building blocks. The leakage bound is $0.15n\log p -1$ bits per leakage query, for a security parameter $k$ and a statistical security parameter $n$, such that $\log p \geq k$ and $n$ is a function of $k$. It is possible to see that LR-PKE is efficient enough to be used for real-world usage.


2019 ◽  
Vol 795 ◽  
pp. 20-35
Author(s):  
Ming Zeng ◽  
Jie Chen ◽  
Kai Zhang ◽  
Haifeng Qian

2019 ◽  
Vol 30 (04) ◽  
pp. 589-606
Author(s):  
Qiqi Lai ◽  
Bo Yang ◽  
Zhe Xia ◽  
Yannan Li ◽  
Yuan Chen ◽  
...  

As the progress of quantum computers, it is desired to propose many more efficient cryptographic constructions with post-quantum security. In the literatures, almost all cryptographic schemes and protocols can be explained and constructed modularly from certain cryptographic primitives, among which an Identity-Based Hash Proof System (IB-HPS) is one of the most basic and important primitives. Therefore, we can utilize IB-HPSs with post-quantum security to present several types of post-quantum secure schemes and protocols. Up until now, all known IB-HPSs with post-quantum security are instantiated based on latticed-based assumptions. However, all these lattice-based IB-HPSs are either in the random oracle model or not efficient enough in the standard model. Hence, it should be of great significance to construct more efficient IB-HPSs from lattices in the standard model. In this paper, we propose a new smooth IB-HPS with anonymity based on the Learning with Errors (LWE) assumption in the standard model. This new construction is mainly inspired by a classical identity-based encryption scheme based on LWE due to Agreawal et al. in Eurocrypt 2010. And our innovation is to employ the algorithm SampleGaussian introduced by Gentry et al. and the property of random lattice to simulate the identity secret key with respect to the challenge identity. Compared with other existing IB-HPSs in the standard model, our master public key is quite compact. As a result, our construction has much lower overheads on computation and storage.


Author(s):  
Keith M. Martin

In this chapter, we introduce public-key encryption. We first consider the motivation behind the concept of public-key cryptography and introduce the hard problems on which popular public-key encryption schemes are based. We then discuss two of the best-known public-key cryptosystems, RSA and ElGamal. For each of these public-key cryptosystems, we discuss how to set up key pairs and perform basic encryption and decryption. We also identify the basis for security for each of these cryptosystems. We then compare RSA, ElGamal, and elliptic-curve variants of ElGamal from the perspectives of performance and security. Finally, we look at how public-key encryption is used in practice, focusing on the popular use of hybrid encryption.


Sign in / Sign up

Export Citation Format

Share Document