Stabilization of Discrete-Time Dynamical Systems Under Event-Triggered Impulsive Control with and Without Time-Delays

2018 ◽  
Vol 31 (1) ◽  
pp. 130-146 ◽  
Author(s):  
Bin Liu ◽  
David John Hill ◽  
Changfan Zhang ◽  
Zhijie Sun
2019 ◽  
Vol 24 (5) ◽  
Author(s):  
Liangliang Li ◽  
Chuandong Li ◽  
Wei Zhang

This paper focuses on the problem of time-delayed impulsive control with actuator saturation for discrete-time dynamical systems. By establishing a delayed impulsive difference inequality, combining with convex analysis and inequality techniques, some sufficient conditions are obtained to ensure exponential stability for discrete-time dynamical systems via time-delayed impulsive controller with actuator saturation. The designed controller admits the existence of some transmission delays in impulsive feedback law, and the control input variables are required to stay within an availability zone. Several numerical simulations are also given to demonstrate the effectiveness of the proposed results. 


2009 ◽  
Vol 19 (10) ◽  
pp. 3283-3309 ◽  
Author(s):  
ALFREDO MEDIO ◽  
MARINA PIREDDU ◽  
FABIO ZANOLIN

This article describes a method — called here "the method of Stretching Along the Paths" (SAP) — to prove the existence of chaotic sets in discrete-time dynamical systems. The method of SAP, although mathematically rigorous, is based on some elementary geometrical considerations and is relatively easy to apply to models arising in applications. The paper provides a description of the basic mathematical ideas behind the method, as well as three applications to economic models. Incidentally, the paper also discusses some questions concerning the definition of chaos and some problems arising from economic models in which the dynamics are defined only implicitly.


Author(s):  
Wassim M. Haddad ◽  
Sergey G. Nersesov

This chapter develops vector dissipativity notions for large-scale nonlinear discrete-time dynamical systems. In particular, it introduces a generalized definition of dissipativity for large-scale nonlinear discrete-time dynamical systems in terms of a vector dissipation inequality involving a vector supply rate, a vector storage function, and a nonnegative, semistable dissipation matrix. On the subsystem level, the proposed approach provides a discrete energy flow balance in terms of the stored subsystem energy, the supplied subsystem energy, the subsystem energy gained from all other subsystems independent of the subsystem coupling strengths, and the subsystem energy dissipated. The chapter also develops extended Kalman–Yakubovich–Popov conditions, in terms of the local subsystem dynamics and the interconnection constraints, for characterizing vector dissipativeness via vector storage functions for large-scale discrete-time dynamical systems.


Sign in / Sign up

Export Citation Format

Share Document