scholarly journals Short-form OPA1 is a molecular chaperone in mitochondrial intermembrane space

Author(s):  
Deyang Yao ◽  
Yukun Li ◽  
Sheng Zeng ◽  
Zhifan Li ◽  
Zahir Shah ◽  
...  
2015 ◽  
Vol 156 (13) ◽  
pp. 503-509 ◽  
Author(s):  
Tibor Balogh ◽  
András Szarka

ALR is a mystic protein. It has a so called “long” 22 kDa and a “short” 15 kDa forms. It has been described after partial hepatectomy and it has just been considered as a key protein of liver regeneration. At the beginning of the 21st century it has been revealed that the “long” form is localized in the mitochondrial intermembrane space and it is an element of the mitochondrial protein import and disulphide relay system. Several proteins of the substrates of the mitochondrial disulphide relay system are necessary for the proper function of the mitochondria, thus any mutation of the ALR gene leads to mitochondrial diseases. The “short” form of ALR functions as a secreted extracellular growth factor and it promotes the protection, regeneration and proliferation of hepatocytes. The results gained on the recently generated conditional ALR mutant mice suggest that ALR can play an important role in the pathogenesis of alcoholic and non-alcoholic steatosis. Since the serum level of ALR is modified in several liver diseases it can be a promising marker molecule in laboratory diagnostics. Orv. Hetil., 2015, 156(13), 503–509.


2014 ◽  
Vol 55 (2) ◽  
pp. 332-341 ◽  
Author(s):  
Victoria Hung ◽  
Peng Zou ◽  
Hyun-Woo Rhee ◽  
Namrata D. Udeshi ◽  
Valentin Cracan ◽  
...  

2014 ◽  
Vol 289 (14) ◽  
pp. 9852-9864 ◽  
Author(s):  
Hugo Fraga ◽  
Joan-Josep Bech-Serra ◽  
Francesc Canals ◽  
Gabriel Ortega ◽  
Oscar Millet ◽  
...  

1998 ◽  
Vol 265 (1) ◽  
pp. 123-128 ◽  
Author(s):  
Heiko Martin ◽  
Christoph Eckerskorn ◽  
Frank Gärtner ◽  
Joachim Rassow ◽  
Fritz Lottspeich ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Andrea Pasquadibisceglie ◽  
Fabio Polticelli

Abstract The members of the mitochondrial carrier family, also known as solute carrier family 25 (SLC25), are transmembrane proteins involved in the translocation of a plethora of small molecules between the mitochondrial intermembrane space and the matrix. These transporters are characterized by three homologous domains structure and a transport mechanism that involves the transition between different conformations. Mutations in regions critical for these transporters’ function often cause several diseases, given the crucial role of these proteins in the mitochondrial homeostasis. Experimental studies can be problematic in the case of membrane proteins, in particular concerning the characterization of the structure–function relationships. For this reason, computational methods are often applied in order to develop new hypotheses or to support/explain experimental evidence. Here the computational analyses carried out on the SLC25 members are reviewed, describing the main techniques used and the outcome in terms of improved knowledge of the transport mechanism. Potential future applications on this protein family of more recent and advanced in silico methods are also suggested.


Sign in / Sign up

Export Citation Format

Share Document