fusion proteins
Recently Published Documents


TOTAL DOCUMENTS

3190
(FIVE YEARS 403)

H-INDEX

120
(FIVE YEARS 11)

Antibodies ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 5
Author(s):  
Xiaotian Zhong ◽  
Aaron M. D’Antona ◽  
John J. Scarcelli ◽  
Jason C. Rouse

Glycans as sugar polymers are important metabolic, structural, and physiological regulators for cellular and biological functions. They are often classified as critical quality attributes to antibodies and recombinant fusion proteins, given their impacts on the efficacy and safety of biologics drugs. Recent reports on the conjugates of N-acetyl-galactosamine and mannose-6-phosphate for lysosomal degradation, Fab glycans for antibody diversification, as well as sialylation therapeutic modulations and O-linked applications, have been fueling the continued interest in glycoengineering. The current advancements of the human glycome and the development of a comprehensive network in glycosylation pathways have presented new opportunities in designing next-generation therapeutic proteins.


Theranostics ◽  
2022 ◽  
Vol 12 (4) ◽  
pp. 1486-1499
Author(s):  
Juliane Medler ◽  
Kirstin Kucka ◽  
Vinicio Melo ◽  
Tengyu Zhang ◽  
Stefan von Rotenhan ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260954
Author(s):  
Ian Wilkinson ◽  
Stephen Anderson ◽  
Jeremy Fry ◽  
Louis Alex Julien ◽  
David Neville ◽  
...  

Elimination of the binding of immunoglobulin Fc to Fc gamma receptors (FcγR) is highly desirable for the avoidance of unwanted inflammatory responses to therapeutic antibodies and fusion proteins. Many different approaches have been described in the literature but none of them completely eliminates binding to all of the Fcγ receptors. Here we describe a set of novel variants having specific amino acid substitutions in the Fc region at L234 and L235 combined with the substitution G236R. They show no detectable binding to Fcγ receptors or to C1q, are inactive in functional cell-based assays and do not elicit inflammatory cytokine responses. Meanwhile, binding to FcRn, manufacturability, stability and potential for immunogenicity are unaffected. These variants have the potential to improve the safety and efficacy of therapeutic antibodies and Fc fusion proteins.


2021 ◽  
Author(s):  
Michelle S. Frei ◽  
Miroslaw Tarnawski ◽  
M. Julia Roberti ◽  
Birgit Koch ◽  
Julien Hiblot ◽  
...  

AbstractSelf-labeling protein tags such as HaloTag are powerful tools that can label fusion proteins with synthetic fluorophores for use in fluorescence microscopy. Here we introduce HaloTag variants with either increased or decreased brightness and fluorescence lifetime compared with HaloTag7 when labeled with rhodamines. Combining these HaloTag variants enabled live-cell fluorescence lifetime multiplexing of three cellular targets in one spectral channel using a single fluorophore and the generation of a fluorescence lifetime-based biosensor. Additionally, the brightest HaloTag variant showed up to 40% higher brightness in live-cell imaging applications.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7582
Author(s):  
Nivetha Krishna Krishna Moorthy ◽  
Oliver Seifert ◽  
Stephan Eisler ◽  
Sara Weirich ◽  
Roland E. Kontermann ◽  
...  

Glioblastoma (GBM) is the most malignant and aggressive form of glioma and is associated with a poor survival rate. Latest generation Tumour Necrosis Factor Related Apoptosis-Inducing Ligand (TRAIL)-based therapeutics potently induce apoptosis in cancer cells, including GBM cells, by binding to death receptors. However, the blood–brain barrier (BBB) is a major obstacle for these biologics to enter the central nervous system (CNS). We therefore investigated if antibody-based fusion proteins that combine hexavalent TRAIL and angiopep-2 (ANG2) moieties can be developed, with ANG2 promoting receptor-mediated transcytosis (RMT) across the BBB. We demonstrate that these fusion proteins retain the potent apoptosis induction of hexavalent TRAIL-receptor agonists. Importantly, blood–brain barrier cells instead remained highly resistant to this fusion protein. Binding studies indicated that ANG2 is active in these constructs but that TRAIL-ANG2 fusion proteins bind preferentially to BBB endothelial cells via the TRAIL moiety. Consequently, transport studies indicated that TRAIL-ANG2 fusion proteins can, in principle, be shuttled across BBB endothelial cells, but that low TRAIL receptor expression on BBB endothelial cells interferes with efficient transport. Our work therefore demonstrates that TRAIL-ANG2 fusion proteins remain highly potent in inducing apoptosis, but that therapeutic avenues will require combinatorial strategies, such as TRAIL-R masking, to achieve effective CNS transport.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2443
Author(s):  
Xujiao Ren ◽  
Ping Qian ◽  
Shudan Liu ◽  
Huanchun Chen ◽  
Xiangmin Li

Congenital tremor (CT) type A-II in piglets is caused by an emerging atypical porcine pestivirus (APPV), which is prevalent in swine herds and a serious threat to the pig production industry. This study aimed to construct APPV E2 subunit vaccines fused with Fc fragments and evaluate their immunogenicity in piglets. Here, APPV E2Fc and E2ΔFc fusion proteins expressed in Drosophila Schneider 2 (S2) cells were demonstrated to form stable dimers in SDS-PAGE and western blotting assays. Functional analysis revealed that aE2Fc and aE2ΔFc fusion proteins could bind to FcγRI on antigen-presenting cells (APCs), with the affinity of aE2Fc to FcγRI being higher than that of aE2ΔFc. Moreover, subunit vaccines based on aE2, aE2Fc, and aE2ΔFc fusion proteins were prepared, and their immunogenicity was evaluated in piglets. The results showed that the Fc fusion proteins emulsified with the ISA 201VG adjuvant elicited stronger humoral and cellular immune responses than the IMS 1313VG adjuvant. These findings suggest that APPV E2 subunit vaccines fused with Fc fragments may be a promising vaccine candidate against APPV.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260360
Author(s):  
Ehsan Ahmadi ◽  
Mohammad Reza Zabihi ◽  
Ramin Hosseinzadeh ◽  
Leila Mohamed Khosroshahi ◽  
Farshid Noorbakhsh

Recent emergence of SARS-CoV-2 and associated COVID-19 pandemic have posed a great challenge for the scientific community. In this study, we performed bioinformatic analyses on SARS-CoV-2 protein sequences, trying to unravel potential molecular similarities between this newly emerged pathogen with non-coronavirus ssRNA viruses. Comparing the proteins of SARS-CoV-2 with non-coronavirus positive and negative strand ssRNA viruses revealed multiple sequence similarities between SARS-CoV-2 and non-coronaviruses, including similarities between RNA-dependent RNA-polymerases and helicases (two highly-conserved proteins). We also observed similarities between SARS-CoV-2 surface (i.e. spike) protein with paramyxovirus fusion proteins. This similarity was restricted to a segment of spike protein S2 subunit which is involved in cell fusion. We next analyzed spike proteins from SARS-CoV-2 “variants of concern” (VOCs) and “variants of interests” (VOIs) and found that some of these variants show considerably higher spike-fusion similarity with paramyxoviruses. The ‘spike-fusion’ similarity was also observed for some pathogenic coronaviruses other than SARS-CoV-2. Epitope analysis using experimentally verified data deposited in Immune Epitope Database (IEDB) revealed that several B cell epitopes as well as T cell and MHC binding epitopes map within the spike-fusion similarity region. These data indicate that there might be a degree of convergent evolution between SARS-CoV-2 and paramyxovirus surface proteins which could be of pathogenic and immunological importance.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 973-973
Author(s):  
Chelsey Jones

Abstract During the natural cycle of life, most eukaryotic organisms grow old, age, and die. A common natural mechanism by which organisms “reset” their lifespan is through sexual reproduction; however, how this rejuvenation takes place remains unknown. My lab has found that meiosis in budding yeast, the developmental program that forms sex cells, eliminates age-induced damage. This involves the formation of a novel nuclear compartment, the Gametogenesis Uninherited Nuclear Compartment (GUNC), which acts as a trash can for accumulated age-induced damage. To understand the molecular details of this process, I worked on designing a screen for genes involved in GUNC formation. My mentor and I fused three different proteins targeted to the GUNC and a protein that is able to bind to a drug-resistance plasmid, in order to couple the inheritance of a selectable DNA marker with the elimination of age-induced damage. Initial testing of these three fusion proteins suggested that they were unable to successfully target the plasmid to the GUNC; as such, testing of additional candidate proteins is necessary. We plan to eventually use this system to identify mutations that disrupt GUNC formation and cause inheritance of the drug-resistance plasmid. By identifying and perturbing proteins involved in GUNC formation, we are hoping to be able to drive the inheritance of specific types of age-induced damage, allowing for the determination of what a symptom versus a cause of aging is.


Nature Cancer ◽  
2021 ◽  
Vol 2 (12) ◽  
pp. 1285-1285
Author(s):  
Ioanna Pavlaki

2021 ◽  
Vol 17 (11) ◽  
pp. e1009409
Author(s):  
Charlotte A. Stoneham ◽  
Simon Langer ◽  
Paul D. De Jesus ◽  
Jacob M. Wozniak ◽  
John Lapek ◽  
...  

The HIV-1 accessory protein Vpu modulates membrane protein trafficking and degradation to provide evasion of immune surveillance. Targets of Vpu include CD4, HLAs, and BST-2. Several cellular pathways co-opted by Vpu have been identified, but the picture of Vpu’s itinerary and activities within membrane systems remains incomplete. Here, we used fusion proteins of Vpu and the enzyme ascorbate peroxidase (APEX2) to compare the ultrastructural locations and the proximal proteomes of wild type Vpu and Vpu-mutants. The proximity-omes of the proteins correlated with their ultrastructural locations and placed wild type Vpu near both retromer and ESCRT-0 complexes. Hierarchical clustering of protein abundances across the mutants was essential to interpreting the data and identified Vpu degradation-targets including CD4, HLA-C, and SEC12 as well as Vpu-cofactors including HGS, STAM, clathrin, and PTPN23, an ALIX-like protein. The Vpu-directed degradation of BST-2 was supported by STAM and PTPN23 and to a much lesser extent by the retromer subunits Vps35 and SNX3. PTPN23 also supported the Vpu-directed decrease in CD4 at the cell surface. These data suggest that Vpu directs targets from sorting endosomes to degradation at multi-vesicular bodies via ESCRT-0 and PTPN23.


Sign in / Sign up

Export Citation Format

Share Document