Upper Cretaceous trench deposits of the Neo-Tethyan subduction zone: Jiachala Formation from Yarlung Zangbo suture zone in Tibet, China

2018 ◽  
Vol 61 (9) ◽  
pp. 1204-1220 ◽  
Author(s):  
Hanpu Fu ◽  
Xiumian Hu ◽  
Erica M. Crouch ◽  
Wei An ◽  
Jiangang Wang ◽  
...  
2009 ◽  
Vol 146 (4) ◽  
pp. 567-590 ◽  
Author(s):  
SAMUEL P. RICE ◽  
ALASTAIR H. F. ROBERTSON ◽  
TIMUR USTAÖMER ◽  
NURDAN İNAN ◽  
KEMAL TASLI

AbstractSix individual tectonostratigraphic units are identified within the İzmir–Ankara–Erzincan Suture Zone in the critical Erzincan area of the Eastern Pontides. The Ayıkayası Formation of Campanian–Maastrichtian age is composed of bedded pelagic limestones intercalated with polymict, massive conglomerates. The Ayıkayası Formation conformably overlies the Tauride passive margin sequence in the Munzur Mountains to the south and is interpreted as an underfilled foredeep basin. The Refahiye Complex, of possible Late Cretaceous age, is a partial ophiolite composed of ~75% (by volume) serpentinized peridotite (mainly harzburgite), ~20% diabase and minor amounts of gabbro and plagiogranite. The complex is interpreted as oceanic lithosphere that formed by spreading above a subduction zone. Unusual screens of metamorphic rocks (e.g. marble and schist) locally occur between sheeted diabase dykes. The Upper Cretaceous Karayaprak Mélange exhibits two lithological associations: (1) the basalt + radiolarite + serpentinite association, including depleted arc-type basalts; (2) the massive neritic limestone + lava + volcaniclastic association that includes fractionated, intermediate-composition lavas, and is interpreted as accreted Neotethyan seamount(s). The several-kilometre-thick Karadağ Formation, of Campanian–Maastrichtian age, is composed of greenschist-facies volcanogenic rocks of mainly basaltic to andesitic composition, and is interpreted as an emplaced Upper Cretaceous volcanic arc. The Campanian–Early Eocene Sütpınar Formation (~1500 m thick) is a coarsening-upward succession of turbiditic calcarenite, sandstone, laminated mudrock, volcaniclastic sedimentary rocks that includes rare andesitic lava, and is interpreted as a regressive forearc basin. The Late Paleocene–Eocene Sipikör Formation is a laterally varied succession of shallow-marine carbonate and siliciclastic lithofacies that overlies deformed Upper Cretaceous units with an angular unconformity. Structural study indicates that the assembled accretionary prism, supra-subduction zone-type oceanic lithosphere and volcanic arc units were emplaced northwards onto the Eurasian margin and also southwards onto the Tauride (Gondwana-related) margin during Campanian–Maastrichtian time. Further, mainly southward thrusting took place during the Eocene in this area, related to final closure of Tethys. Our preferred tectonic model involves northward subduction, supra-subduction zone ophiolite genesis and arc magmatism near the northerly, Eurasian margin of the Mesozoic Tethys.


2013 ◽  
Vol 2 (9) ◽  
pp. 102-115
Author(s):  
Yousif Osman Mohammad ◽  
Nabaz Rashid Hama Aziz

The Pauza ultramafic body is part of Upper Cretaceous Ophiolitic massifs of the Zagros Suture Zone, NE Iraq. The present study reveals evidence of Ultra-high pressure (UHP), and deep mantle signature of these peridotites in the Zagros Suture Zone throughout the observation of backscattered images and micro analyses which have been performed on orthopyroxen crystals in lherzolite of Pauza ultramafic rocks.Theorthopyroxen shows abundant exsolution lamellae of coarse unevenly distributed clinopyroxene coupled with the submicron uniformly distributed needles of Cr-spinel. The observed clusters of Opx–Cpx–Spl represent the decompression products of pyrope-rich garnet produced as a result of the transition from ultra-high pressure garnet peridotite to low-pressure spinel peridotite (LP). Neoblastic olivine (Fo92 – 93) with abundant multi-form Cr- spinel inclusions occurs as a fine-grained aggregate around orthopyroxene, whereas coarse olivine (Fo90-91) free from chromian-spinel is found in matrix. The similarity of the Cr-spinel lamellae orientations in both olivine and orthopyroxene, moreover, the enrichments of both Cr and Fe3+ in the Cr-spinel inclusions in neoblastic olivine relative to Cr-spinel lamellae in orthopyroxene, suggest that spinel inclusions in olivine have been derived from former Cr-spinel lamellae in orthopyroxene. Neoblastic olivine is formed by reaction of silica-poor ascending melt and orthopyroxene. It is inferred that the olivines with multi-form spinel inclusions has been formed by incongruent melting of pre-existing spinel lamellae-rich orthopyroxene.


Sign in / Sign up

Export Citation Format

Share Document