suture zone
Recently Published Documents


TOTAL DOCUMENTS

963
(FIVE YEARS 290)

H-INDEX

68
(FIVE YEARS 7)

Lithos ◽  
2022 ◽  
pp. 106594
Author(s):  
S. Sivaprabha ◽  
Irfan M. Bhat ◽  
T. Ahmad ◽  
T. Tanaka ◽  
S. Balakrishnan ◽  
...  

Author(s):  
Kawther Araïbia ◽  
Kamel Amri ◽  
Massinissa Amara ◽  
Abderrahmane Bendaoud ◽  
Mohamed Hamoudi ◽  
...  

Author(s):  
Minh Pham ◽  
Hieu ◽  
Kenta Kawaguchi ◽  
Anh ◽  
Phuc

together with abundant Permian-Triassic magmatic rocks. This magmatic complex provides important information to reconstruct the tectonic evolution of the Indochina block and surrounding areas. The Cha Val plutonic rocks mainly comprise diorite, quartz diorite, and granodiorite. Geochemically, they are metaluminous with low A/CNK (0.49 to 1.16 with an average of 0.85), medium to high K, low to medium SiO2, and Na2O/K2O>1. Trace and rare earth element compositions display enrichment in Cs, U, Pb, and Nd, but depletion in Ba, Nb, Ta, P, Eu, and Ti, similar to those of continental arc-related magmas. Rock-forming minerals of the Cha Val plutonic rocks are characterized by abundant hornblende. All observed petrographical and geochemical characteristics suggest that the Cha Val plutonic rocks are typical for I-type affinity generated from a subduction regime. LA-ICP-MS U-Pb zircon analyses of three representative samples yielded their crystallization ages between 258.0 Ma and 248.9 Ma, temporally coeval with Late Permian-Early Triassic magmatism previously reported in the Truong Son belt. The (87Sr/86Sr)i ratios (0.7081 to 0.7244), negative whole-rock εNd(t) values (-4.5 to -2.9), zircon εHf(t) values (-1.04 to 2.71), and whole-rock Nd and zircon Hf model ages (TDM2) (1394 Ma to 1111 Ma) indicate that the Cha Val plutonic rocks are derived from melting of Mesoproterozoic crustal materials with a minor contribution of mantle-derived melt. Together with other Permian-Triassic magmatic complexes along the Song Ma suture zone and the Truong Son Belt, the Cha Val plutonic rocks are a representative of magmatism associated with the subduction-collision that amalgamated the South China and Indochina blocks after the closure of a branch of Paleo-Tethys along the Song Ma suture zone during the Late Permian-Early Triassic Indosinian orogeny.


Geosphere ◽  
2021 ◽  
Author(s):  
Jeffrey M. Trop ◽  
Jeff A. Benowitz ◽  
Carl S. Kirby ◽  
Matthew E. Brueseke

The Wrangell Arc in Alaska (USA) and adjacent volcanic fields in the Yukon provide a long-term record of interrelations between flat-slab subduction of the Yakutat microplate, strike-slip translation along the Denali–Totschunda–Duke River fault system, and magmatism focused within and proximal to a Cretaceous suture zone. Detrital zircon (DZ) U-Pb (n = 2640) and volcanic lithic (DARL) 40Ar/39Ar dates (n = 2771) from 30 modern river sediment samples document the spatial-temporal evolution of Wrangell Arc magmatism, which includes construction of some of the largest Quaternary volcanoes on Earth. Mismatches in DZ and DARL date distributions highlight the impact of variables such as mineral fertility and downstream mixing/dilution on resulting provenance signatures. Geochronologic data document the initiation of Wrangell Arc magmatism at ca. 30–17 Ma along both sides of the Totschunda fault on the north flank of the Wrangell–St. Elias Mountains in Alaska, followed by southeastward progression of magmatism at ca. 17–10 Ma along the Duke River fault in the Yukon. This spatial-temporal evolution is attributable to dextral translation along intra-arc, strike-slip faults and a change in the geometry of the subducting slab (slab curling/steepening). Magmatism then progressed generally westward outboard of the Totschunda and Duke River faults at ca. 13–6 Ma along the southern flank of the Wrangell–St. Elias Mountains in Alaska and then northwestward from ca. 6 Ma to present in the western Wrangell Mountains. The 13 Ma to present spatial-temporal evolution is consistent with dextral translation along intra-arc, strike-slip faults and previously documented changes in plate boundary conditions, which include an increase in plate convergence rate and angle at ca. 6 Ma. Voluminous magmatism is attributed to shallow subduction-related flux melting and slab edge melting that is driven by asthenospheric upwelling along the lateral edge of the Yakutat flat slab. Magmatism was persistently focused within or adjacent to a remnant suture zone, which indicates that upper plate crustal heterogeneities influenced arc magmatism. Rivers sampled also yield subordinate Paleozoic–Mesozoic DZ and DARL age populations that reflect earlier episodes of magmatism within underlying accreted terranes and match magmatic flare-ups documented along the Cordilleran margin.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1399
Author(s):  
Muhammad Awais ◽  
Muhammad Qasim ◽  
Javed Iqbal Tanoli ◽  
Lin Ding ◽  
Maryam Sattar ◽  
...  

This study reported the detrital zircon U-Pb geochronology of the Cenozoic sequence exposed in Kotli, northwestern Himalaya, Pakistan, which forms part of the Kashmir foreland basin. The U-Pb detrital age patterns of the Paleocene Patala Formation show a major age cluster between ~130–290 Ma, ~500–1000 Ma and ~1000–1500 Ma, which mainly resembles the lesser and higher Himalayan sequence. However, the younger age pattern (~130–290 Ma) can be matched to the ages of the ophiolites exposed along the Indus–Tsangpo suture zone. In addition, two younger grains with 57 Ma and 55 Ma ages may indicate a contribution from the Kohistan-Ladakh arc. The detrital zircons in the upper Tertiary sequence show the increased input of younger detrital ages <100 Ma, with more pronounced peaks at ~36–58 Ma, ~72–94 Ma and ~102–166 Ma, indicating the strong resemblance to the Asian sources including the Kohistan–Ladakh arc, Karakoram block and Gangdese batholith. This provenance shift, recorded in the upper portion of Patala Formation and becoming more visible in the upper Tertiary clastic sequence (Kuldana and Murree formations), is related to the collision of the Indian and Asian plates in the northwestern Himalayas. Considering the age of the Patala Formation, we suggest that the Indian and Asian plates collided during 57–55 Ma in the northwestern Himalayas, Pakistan.


2021 ◽  
pp. 1-20
Author(s):  
M. Özkaptan ◽  
E. Gülyüz ◽  
N. Kaymakcı ◽  
C. G. Langereis
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Andrew J. Calvert ◽  
Michael P. Doublier ◽  
Samantha E. Sellars

AbstractSeismic reflectors in the uppermost mantle, which can indicate past plate tectonic subduction, are exceedingly rare below Archaean cratons, and restricted to the Neoarchaean. Here we present reprocessed seismic reflection profiles from the northwest Archaean Yilgarn Craton and the Palaeoproterozoic Capricorn Orogen of western Australia that reveal the existence of a ~4 km thick south-dipping band of seismic reflectors that extends from the base of the Archaean crust to at least 60 km depth. We interpret these reflectors, which lie south of a ~50 km deep crustal root, as a relict suture zone within the lithosphere. We suggest that the mantle reflectors were created either by subduction of an oceanic plate along the northern edge of the Yilgarn Craton, which started in the Mesoarchaean and produced the rocks in northern Yilgarn greenstone belts that formed in a supra-subduction zone setting, or, alternatively, by underthrusting of continental crust deep into the lithosphere during the Palaeoproterozoic.


2021 ◽  
Vol 32 (6) ◽  
pp. 1512-1527
Author(s):  
Alessandro Ellero ◽  
Chiara Frassi ◽  
Mehmet Cemal Göncüoğlu ◽  
Marco Lezzerini ◽  
Michele Marroni ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document