The role of initial signals in the tropical Pacific Ocean in predictions of negative Indian Ocean Dipole events

2018 ◽  
Vol 61 (12) ◽  
pp. 1832-1843 ◽  
Author(s):  
Rong Feng ◽  
Wansuo Duan
2011 ◽  
Vol 24 (14) ◽  
pp. 3593-3608 ◽  
Author(s):  
Dongliang Yuan ◽  
Jing Wang ◽  
Tengfei Xu ◽  
Peng Xu ◽  
Zhou Hui ◽  
...  

Abstract Controlled numerical experiments using ocean-only and ocean–atmosphere coupled general circulation models show that interannual sea level depression in the eastern Indian Ocean during the Indian Ocean dipole (IOD) events forces enhanced Indonesian Throughflow (ITF) to transport warm water from the upper-equatorial Pacific Ocean to the Indian Ocean. The enhanced transport produces elevation of the thermocline and cold subsurface temperature anomalies in the western equatorial Pacific Ocean, which propagate to the eastern equatorial Pacific to induce significant coupled evolution of the tropical Pacific oceanic and atmospheric circulation. Analyses suggest that the IOD-forced ITF transport anomalies are about the same amplitudes as those induced by the Pacific ENSO. Results of the coupled model experiments suggest that the anomalies induced by the IOD persist in the equatorial Pacific until the year following the IOD event, suggesting the importance of the oceanic channel in modulating the interannual climate variations of the tropical Pacific Ocean at the time lag beyond one year.


2020 ◽  
Vol 33 (10) ◽  
pp. 4207-4228 ◽  
Author(s):  
Jing Duan ◽  
Yuanlong Li ◽  
Lei Zhang ◽  
Fan Wang

AbstractInterannual variabilities of sea level and upper-ocean gyre circulation of the western tropical Pacific Ocean (WTPO) have been predominantly attributed to El Niño–Southern Oscillation (ENSO). The results of the present study put forward important modulation effects by the Indian Ocean dipole (IOD) mode. The observed sea level in the WTPO shows significant instantaneous and lagged correlations (around −0.60 and 0.40, respectively) with the IOD mode index (DMI). A composite of 14 “independent” IOD events for 1958–2017 shows negative sea level anomalies (SLAs) of 4–7 cm in the WTPO during positive IOD events and positive SLAs of 6–8 cm in the following year that are opposite in sign to the El Niño effect. The IOD impacts are reproduced by large-ensemble simulations of a climate model that generate respectively 430 and 519 positive and negative independent IOD events. A positive IOD induces westerly winds over the western and central tropical Pacific and causes negative SLAs through Ekman upwelling, and it facilitates the establishment of a La Niña condition in the following year that involves enhanced Pacific trade winds and causes positive SLAs in the WTPO. Ocean model experiments confirm that the IOD affects the WTPO sea level mainly through modulating the tropical Pacific winds. Variability of the Indonesian Throughflow (ITF) induced by IOD winds has a relatively weak effect on the WTPO. The IOD’s impacts on the major upper-ocean currents are also considerable, causing anomalies of 1–4 Sv (1 Sv ≡ 106 m3 s−1) in the South Equatorial Current (SEC) and North Equatorial Countercurrent (NECC) volume transports.


2012 ◽  
Vol 87 ◽  
pp. 194-209 ◽  
Author(s):  
Stella C. Woodard ◽  
Deborah J. Thomas ◽  
Franco Marcantonio

1998 ◽  
Vol 103 (C13) ◽  
pp. 30855-30871 ◽  
Author(s):  
Sonia Bauer ◽  
Mark S. Swenson ◽  
Annalisa Griffa ◽  
Arthur J. Mariano ◽  
Ken Owens

2006 ◽  
Vol 33 (14) ◽  
Author(s):  
F. Castruccio ◽  
J. Verron ◽  
L. Gourdeau ◽  
J. M. Brankart ◽  
P. Brasseur

Sign in / Sign up

Export Citation Format

Share Document