equatorial pacific ocean
Recently Published Documents


TOTAL DOCUMENTS

538
(FIVE YEARS 65)

H-INDEX

69
(FIVE YEARS 3)

MAUSAM ◽  
2022 ◽  
Vol 45 (4) ◽  
pp. 315-324
Author(s):  
ASOI LAL ◽  
R. S. SUNDAR

Th en: are various synoptic s)')leDls which affect the rainfall over India during southwest mansoonseason directly or indirectly. AJ'110 J12 them. one subject of interest is the westward movina cloud pulses over th eequatorial wt'sl Pacific region. An attempt h as been made to connect the satellite c10uJ pulses in the eq ua torial westPacific. ns seen in the INSAT· I geostationary satellite imageries. with the rai nfall of selected meteorological subqh·i~ on~ o f Ind ia v.tlkh an: seemingly affected by Ih ~'~ pulses.


2021 ◽  
pp. 1-38

Abstract The authors investigated the inter-basin interactions between the Pacific and Atlantic Oceans depending on the phase relationship of Pacific decadal oscillation (PDO)/Atlantic multi-decadal oscillation (AMO) based on observations and idealized model experiments. When the AMO and the PDO are in-phase (i.e., +PDO/+AMO or −PDO/-AMO), the Pacific Ocean regulates the SST anomalies in the equatorial Atlantic Ocean with altering a Walker circulation. During this period, there is a negative SST-precipitation relationship in the equatorial Atlantic Ocean where the atmosphere forces the ocean. In contrast, when they are out-of-phase (i.e., either +PDO/-AMO or −PDO/+AMO), the Atlantic Ocean influences the equatorial Pacific Ocean by modifying Walker circulation, resulting in a westward shift of a center of convective forcing in the equatorial Pacific Ocean compared to that during an inphase relationship of PDO/AMO. During this period, a positive SST-precipitation relationship is dominant in the equatorial Atlantic Ocean where the ocean forces the atmosphere. To verify this result, we conducted pacemaker experiments using the Nanjing University of Information Science and Technology Earth System Model version 3 (NESM3). Model results supported our findings obtained from the observations. We infer that the characteristics of the Pacific-Atlantic inter-basin interactions depend on whether the PDO and AMO phases are either in-phase or out of phase.


MAUSAM ◽  
2021 ◽  
Vol 52 (1) ◽  
pp. 275-284
Author(s):  
D. Jagadheesha ◽  
R. Ramesh

Recent modelling studies have given insight into the role of internal feedback processes among components of the climate system on the evolution of monsoon strength since the Last Glacial Maximum (21,000 years ago). Here we present an overview of these modelling studies related to the summer monsoon over India and northern Africa. These studies indicate that the seasonal insolation changes alone do not explain the observed extent of hydrological changes during the early and middle Holocene over northern Africa. To simulate the extent of observed changes during this period incorporation of vegetation as an active component in climate models appears to be necessary. Over the Indian region, model results show that precipitation-soil moisture feedbacks play an important role in determining the response of the monsoon to changes in insolation and glacial-age surface boundary conditions. Indian monsoon strength from  proxy records during the early and middle. Holocene have also been used in conjunction with coupled ocean atmosphere general circulation model experiments to refute the suggestion that semi-permanent warm surface conditions prevailed over equatorial Pacific ocean from 11 to 5ka.


MAUSAM ◽  
2021 ◽  
Vol 49 (4) ◽  
pp. 443-448
Author(s):  
G. P. SINGH ◽  
J. CHATTOPADHYAY

The relationship between Indian northeast monsoon rainfall over Tamil Nadu (TNR) and southeast India (SER) as well as two indices of southern oscillation (SOI), and sea surface temperature (SST) anomalies over different Nino regions of equatorial Pacific Ocean and seven tropical circulation indices (TCI), have been studied for different periods. The study indicates that northeast monsoon rainfall (TNR) shows significant inverse relationship with SOI (I-D) during previous MAM (March- April-May) season. significant direct relationship with SST anomalies over Nino-4 region during previous JJA (June-July- August) and significant direct relationship with TCI (C-N) during previous DJF, The SOI (I-D), MAM correlates I significantly and negatively with both the northeast monsoon rainfall series, the TNR rainfall series displaying the better correlation. The strongest correlation is observed during 1961-90. For SSTA, the strongest correlation is during 1964-85 and for TCI, the highest correlation is observed during 1958-82.


2021 ◽  
Author(s):  
Rebecca Chmiel ◽  
Nathan Lanning ◽  
Allison Laubach ◽  
Jong-Mi Lee ◽  
Jessica Fitzsimmons ◽  
...  

Abstract. Over the past decade, the GEOTRACES and wider trace metal geochemical community have made substantial contributions towards constraining the marine cobalt (Co) cycle and its major biogeochemical processes. However, few Co speciation studies have been conducted in the North and equatorial Pacific Ocean, a vast portion of the world’s oceans by volume and an important endmember of deep thermohaline circulation. Dissolved Co (dCo) samples, including total dissolved and labile Co, were measured at-sea during the GEOTRACES Pacific meridional transect (GP15) along the 152° W longitudinal from 56° N to 20° S. Along this transect, upper ocean dCo was linearly correlated to dissolved phosphate (slope = 82 ± 2 µM:M) due to phytoplankton uptake and remineralization. As depth increased, dCo concentrations became increasingly decoupled from phosphate concentrations due to co-scavenging with manganese oxide particles in the mesopelagic. The transect revealed an organically-bound coastal source of dCo to the Alaskan Stream associated with low salinity waters. An intermediate-depth hydrothermal flux of dCo was observed off the Hawaiian coast at the Loihi Seamount, and the elevated dCo was correlated to estimated xs3He at and above the vent site; however, the Loihi Seamount likely did not represent a major source of Co to the Pacific basin. Elevated concentrations of dCo within oxygen minimum zones (OMZs) in the equatorial North and South Pacific were consistent with the suppression of oxidative scavenging, and we estimate that future deoxygenation could increase the OMZ dCo inventory by 13–28 % over the next century. In North Pacific Deep Water (NPDW), a fraction of elevated ligand-bound dCo appeared protected from scavenging by the high biogenic particle flux in the North Pacific basin. This finding is counter to previous expectations of low dCo concentrations in the deep Pacific due to scavenging over thermohaline circulation. Compared to a Co global biogeochemical model, the observed transect displayed more extreme inventories and fluxes of dCo than predicted by the model, suggesting a highly dynamic Pacific Co cycle.


2021 ◽  
Author(s):  
◽  
Kim Nicole Owen

<p>Coral atolls are unique landforms in that they are the physical manifestations of the interplay between both biological and geological processes. Prominent amongst these processes is the ability of the reef organisms to produce CaCO3 and its subsequent erosion and dispersal as sediment. Overriding controls on this process are organic productivity, wave energy, and relative sea level. The development and stability of atolls are thus critically dependent on the balance between several processes which may change over time. Atolls are regarded as being particularly vulnerable to environmental change. This study investigates the Holocene geological history of Palmyra atoll, at 5°52’N 162°04’W, in the northern Line Islands. Beachrock is used as an indicator of (a) paleo-sea level and (b) paleo-shoreline conditions from clasts trapped within the beachrock matrix. The study also models annual CaCO3 production and hydrodynamic conditions at the sea bed to provide an integrated assessment of the past and present sedimentary processes and reef island development at Palmyra Atoll. The atoll is currently the focus of intensive scientific study by the Palmyra Atoll Research Consortium and is particularly suited to this study because of the reduced human presence. This allows the examination of the relationship between beachrock, islet development and other processes, in an environment lacking ongoing anthropogenic development. Beachrock was found at 10 locations at Palmyra Atoll and yielded 14C ages ranging from 1249 to 105 cal. yrs BP. Typically, the beachrock contains mostly coral and algal clasts and is thought to form in the intertidal zone. Continual wetting and drying throughout a tidal cycle results in the precipitation of marine phreatic cements, which thus, indicate paleo-shorelines and sea level elevation. The production of CaCO3 sediment at Palmyra was estimated using reef habitat zones from Hopley (1996) and suggests that the most productive areas are reef terraces and the reef edge. An estimate total of 91,500 tonnes of CaCO3 is produced annually on the reefs, although only approximately 9 % of this becomes sediment that remains on the reef islands. Hydrodynamic processes were modelled using the SWAN model, a bathymetric grid from NOAA, and bottom conditions estimated from other studies. Input parameters were determined using a 13 year WAVEWATCHIII hindcast model of the wave climate for the central Pacific, as well as estimations of extreme wave events. Sediment transport was inferred from the modelled bed shear stress and these results show that to form most of the beachrock outcrops on Palmyra extremely strong wave action must be coupled with a higher sea level in order to allow the propagation of wave energy across the reef to some of the island shorelines. Integration of all results suggests that growth of the reef islands at Palmyra Atoll was initiated as the sea level fell from the mid-Holocene Highstand, 1-2 m above present mean sea level. The islands subsequently grew progressively eastward, forming 3-4 island chains which strike north or northeast. The beachrock that formed on these island provided protection from later wave erosion. Despite limitations caused by lack of climatic and other environmental data due to the isolation of the study area, results are reliable and highlight the application of beachrock as a proxy for past climates and sea levels.</p>


2021 ◽  
Author(s):  
◽  
Kim Nicole Owen

<p>Coral atolls are unique landforms in that they are the physical manifestations of the interplay between both biological and geological processes. Prominent amongst these processes is the ability of the reef organisms to produce CaCO3 and its subsequent erosion and dispersal as sediment. Overriding controls on this process are organic productivity, wave energy, and relative sea level. The development and stability of atolls are thus critically dependent on the balance between several processes which may change over time. Atolls are regarded as being particularly vulnerable to environmental change. This study investigates the Holocene geological history of Palmyra atoll, at 5°52’N 162°04’W, in the northern Line Islands. Beachrock is used as an indicator of (a) paleo-sea level and (b) paleo-shoreline conditions from clasts trapped within the beachrock matrix. The study also models annual CaCO3 production and hydrodynamic conditions at the sea bed to provide an integrated assessment of the past and present sedimentary processes and reef island development at Palmyra Atoll. The atoll is currently the focus of intensive scientific study by the Palmyra Atoll Research Consortium and is particularly suited to this study because of the reduced human presence. This allows the examination of the relationship between beachrock, islet development and other processes, in an environment lacking ongoing anthropogenic development. Beachrock was found at 10 locations at Palmyra Atoll and yielded 14C ages ranging from 1249 to 105 cal. yrs BP. Typically, the beachrock contains mostly coral and algal clasts and is thought to form in the intertidal zone. Continual wetting and drying throughout a tidal cycle results in the precipitation of marine phreatic cements, which thus, indicate paleo-shorelines and sea level elevation. The production of CaCO3 sediment at Palmyra was estimated using reef habitat zones from Hopley (1996) and suggests that the most productive areas are reef terraces and the reef edge. An estimate total of 91,500 tonnes of CaCO3 is produced annually on the reefs, although only approximately 9 % of this becomes sediment that remains on the reef islands. Hydrodynamic processes were modelled using the SWAN model, a bathymetric grid from NOAA, and bottom conditions estimated from other studies. Input parameters were determined using a 13 year WAVEWATCHIII hindcast model of the wave climate for the central Pacific, as well as estimations of extreme wave events. Sediment transport was inferred from the modelled bed shear stress and these results show that to form most of the beachrock outcrops on Palmyra extremely strong wave action must be coupled with a higher sea level in order to allow the propagation of wave energy across the reef to some of the island shorelines. Integration of all results suggests that growth of the reef islands at Palmyra Atoll was initiated as the sea level fell from the mid-Holocene Highstand, 1-2 m above present mean sea level. The islands subsequently grew progressively eastward, forming 3-4 island chains which strike north or northeast. The beachrock that formed on these island provided protection from later wave erosion. Despite limitations caused by lack of climatic and other environmental data due to the isolation of the study area, results are reliable and highlight the application of beachrock as a proxy for past climates and sea levels.</p>


2021 ◽  
Vol 8 ◽  
Author(s):  
Xingnan Fang ◽  
Wei Yu ◽  
Xinjun Chen ◽  
Yang Zhang

In this study, the eddy characteristics on the fishing ground of the Humboldt squid (Dosidicus gigas) in the eastern equatorial Pacific Ocean were detected based on geometrical characteristics with the flow field during April–June 2017. The influence of the eddies on the biophysical environment, D. gigas abundance, and habitat distribution were explored. The habitat was identified by fishery data, sea surface temperature (SST), vertical water temperature, and chlorophyll-a (Chl-a). Results indicated that the eddy lifetime was relatively short, with only three eddies persisting for more than 2 weeks. The number of eddies in each month showed a similar variability trend with the monthly average catch per unit effort (CPUE) of D. gigas. Two eddies were taken with a lifetime of above 2 weeks, which revealed that the environmental conditions around the eddies significantly changed. When the eddy persisted for 8–10 days, SST and vertical temperature gradually decreased, but Chl-a significantly increased. The habitat quality of D. gigas gradually increased, and the gravity center of the fishing ground was consistent with eddy movement. The eddy-induced Ekman pumping led to the transportation of deep waters with rich nutrients into the euphotic layer, promoted the reproduction of bait organisms, and yielded favorable water temperature conditions for D. gigas. These environmental changes aided the formation of high-quality habitats, which increase D. gigas abundance and catch and drive the shift of the gravity centers of fishing grounds with the eddy. Our findings suggested that eddy activities have significant impacts on D. gigas abundance and habitat distribution.


Author(s):  
Shuang Qiu ◽  
Yang Feng ◽  
Yuhong Zhang ◽  
Di Qi ◽  
Yingxu Wu ◽  
...  

2021 ◽  
Vol 17 (5) ◽  
pp. 2091-2117
Author(s):  
Anna Joy Drury ◽  
Diederik Liebrand ◽  
Thomas Westerhold ◽  
Helen M. Beddow ◽  
David A. Hodell ◽  
...  

Abstract. The evolution of the Cenozoic cryosphere from unipolar to bipolar over the past 30 million years (Myr) is broadly known. Highly resolved records of carbonate (CaCO3) content provide insight into the evolution of regional and global climate, cryosphere, and carbon cycle dynamics. Here, we generate the first Southeast Atlantic CaCO3 content record spanning the last 30 Myr, derived from X-ray fluorescence (XRF) ln(Ca / Fe) data collected at Ocean Drilling Program Site 1264 (Walvis Ridge, SE Atlantic Ocean). We present a comprehensive and continuous depth and age model for the entirety of Site 1264 (∼ 316 m; 30 Myr). This constitutes a key reference framework for future palaeoclimatic and palaeoceanographic studies at this location. We identify three phases with distinctly different orbital controls on Southeast Atlantic CaCO3 deposition, corresponding to major developments in climate, the cryosphere and the carbon cycle: (1) strong ∼ 110 kyr eccentricity pacing prevails during Oligocene–Miocene global warmth (∼ 30–13 Ma), (2) increased eccentricity-modulated precession pacing appears after the middle Miocene Climate Transition (mMCT) (∼ 14–8 Ma), and (3) pervasive obliquity pacing appears in the late Miocene (∼ 7.7–3.3 Ma) following greater importance of high-latitude processes, such as increased glacial activity and high-latitude cooling. The lowest CaCO3 content (92 %–94 %) occurs between 18.5 and 14.5 Ma, potentially reflecting dissolution caused by widespread early Miocene warmth and preceding Antarctic deglaciation across the Miocene Climatic Optimum (∼ 17–14.5 Ma) by 1.5 Myr. The emergence of precession pacing of CaCO3 deposition at Site 1264 after ∼ 14 Ma could signal a reorganisation of surface and/or deep-water circulation in this region following Antarctic reglaciation at the mMCT. The increased sensitivity to precession at Site 1264 between 14 and 13 Ma is associated with an increase in mass accumulation rates (MARs) and reflects increased regional CaCO3 productivity and/or recurrent influxes of cooler, less corrosive deep waters. The highest carbonate content (%CaCO3) and MARs indicate that the late Miocene–early Pliocene Biogenic Bloom (LMBB) occurs between ∼ 7.8 and 3.3 Ma at Site 1264; broadly contemporaneous with the LMBB in the equatorial Pacific Ocean. At Site 1264, the onset of the LMBB roughly coincides with appearance of strong obliquity pacing of %CaCO3, reflecting increased high-latitude forcing. The global expression of the LMBB may reflect increased nutrient input into the global ocean resulting from enhanced aeolian dust and/or glacial/chemical weathering fluxes, due to enhanced glacial activity and increased meridional temperature gradients. Regional variability in the timing and amplitude of the LMBB may be driven by regional differences in cooling, continental aridification and/or changes in ocean circulation in the late Miocene.


Sign in / Sign up

Export Citation Format

Share Document