Further ideal multipartite access structures from integer polymatroids

2015 ◽  
Vol 58 (7) ◽  
pp. 1-13 ◽  
Author(s):  
YuJue Wang ◽  
QianHong Wu ◽  
Duncan S. Wong ◽  
Bo Qin ◽  
Yi Mu ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Guoai Xu ◽  
Jiangtao Yuan ◽  
Guosheng Xu ◽  
Zhongkai Dang

Multipartite secret sharing schemes are those that have multipartite access structures. The set of the participants in those schemes is divided into several parts, and all the participants in the same part play the equivalent role. One type of such access structure is the compartmented access structure, and the other is the hierarchical access structure. We propose an efficient compartmented multisecret sharing scheme based on the linear homogeneous recurrence (LHR) relations. In the construction phase, the shared secrets are hidden in some terms of the linear homogeneous recurrence sequence. In the recovery phase, the shared secrets are obtained by solving those terms in which the shared secrets are hidden. When the global threshold is t , our scheme can reduce the computational complexity of the compartmented secret sharing schemes from the exponential time to polynomial time. The security of the proposed scheme is based on Shamir’s threshold scheme, i.e., our scheme is perfect and ideal. Moreover, it is efficient to share the multisecret and to change the shared secrets in the proposed scheme.


10.37236/1825 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Jaume Martí-Farré ◽  
Carles Padró

One of the main open problems in secret sharing is the characterization of the ideal access structures. This problem has been studied for several families of access structures with similar results. Namely, in all these families, the ideal access structures coincide with the vector space ones and, besides, the optimal information rate of a non-ideal access structure is at most $2/3$. An access structure is said to be $r$-homogeneous if there are exactly $r$ participants in every minimal qualified subset. A first approach to the characterization of the ideal $3$-homogeneous access structures is made in this paper. We show that the results in the previously studied families can not be directly generalized to this one. Nevertheless, we prove that the equivalences above apply to the family of the sparse $3$-homogeneous access structures, that is, those in which any subset of four participants contains at most two minimal qualified subsets. Besides, we give a complete description of the ideal sparse $3$-homogeneous access structures.


Sign in / Sign up

Export Citation Format

Share Document