quantum secret sharing
Recently Published Documents


TOTAL DOCUMENTS

472
(FIVE YEARS 101)

H-INDEX

46
(FIVE YEARS 5)

2022 ◽  
Author(s):  
qin liao ◽  
haijie liu ◽  
Yupeng Gong ◽  
zheng wang ◽  
qingquan peng ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yinxiang Long ◽  
Cai Zhang ◽  
Zhiwei Sun

AbstractIn this paper, a standard (3, 5)-threshold quantum secret sharing scheme is presented, in which any three of five participants can resume cooperatively the classical secret from the dealer, but one or two shares contain absolutely no information about the secret. Our scheme can be fulfilled by using the singular properties of maximally entangled 6-qubit states found by Borras. We analyze the scheme’s security by several ways, for example, intercept-and-resend attack, entangle-and-measure attack, and so on. Compared with the other standard threshold quantum secret sharing schemes, our scheme needs neither to use d-level multipartite entangled states, nor to produce shares by classical secret splitting techniques, so it is feasible to be realized.


2021 ◽  
Vol 20 (12) ◽  
Author(s):  
Chaoyang Li ◽  
Chongqiang Ye ◽  
Yuan Tian ◽  
Xiu-Bo Chen ◽  
Jian Li

Author(s):  
Xing-Yan Fan ◽  
Jie Zhou ◽  
Hui-Xian Meng ◽  
Chunfeng Wu ◽  
Arun Kumar Pati ◽  
...  

The [Formula: see text]-qubit Greenberger–Horne–Zeilinger (GHZ) states are the maximally entangled states of [Formula: see text] qubits, which have had many important applications in quantum information processing, such as quantum key distribution and quantum secret sharing. Thus how to distinguish the GHZ states from other quantum states becomes a significant problem. In this work, by presenting a family of the generalized Clauser–Horne–Shimony–Holt (CHSH) inequality, we show that the [Formula: see text]-qubit GHZ states can be indeed identified by the maximal violations of the generalized CHSH inequality under some specific measurement settings. The generalized CHSH inequality is simple and contains only four correlation functions for any [Formula: see text]-qubit system, thus has the merit of facilitating experimental verification. Furthermore, we present a quantum phenomenon of robust violations of the generalized CHSH inequality in which the maximal violation of Bell’s inequality can be robust under some specific noises adding to the [Formula: see text]-qubit GHZ states.


Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1223
Author(s):  
Chengji Liu ◽  
Changhua Zhu ◽  
Zhihui Li ◽  
Min Nie ◽  
Hong Yang ◽  
...  

We propose a continuous-variable quantum secret sharing (CVQSS) scheme based on thermal terahertz (THz) sources in inter-satellite wireless links (THz-CVQSS). In this scheme, firstly, each player locally preforms Gaussian modulation to prepare a thermal THz state, and then couples it into a circulating spatiotemporal mode using a highly asymmetric beam splitter. At the end, the dealer measures the quadrature components of the received spatiotemporal mode through performing the heterodyne detection to share secure keys with all the players of a group. This design enables that the key can be recovered only by the whole group players’ knowledge in cooperation and neither a single player nor any subset of the players in the group can recover the key correctly. We analyze both the security and the performance of THz-CVQSS in inter-satellite links. Results show that a long-distance inter-satellite THz-CVQSS scheme with multiple players is feasible. This work will provide an effective way for building an inter-satellite quantum communication network.


Sign in / Sign up

Export Citation Format

Share Document