Shape-free finite element method: The plane hybrid stress-function (HS-F) element method for anisotropic materials

2011 ◽  
Vol 54 (4) ◽  
pp. 653-665 ◽  
Author(s):  
Song Cen ◽  
XiangRong Fu ◽  
GuoHua Zhou ◽  
MingJue Zhou ◽  
ChenFeng Li
2012 ◽  
Vol 215-216 ◽  
pp. 1026-1032
Author(s):  
Suhas Ankalkhope ◽  
Nilesh Jadhav ◽  
Sunil Bhat

Stress solutions are reviewed for some typical cases of axisymmetric and non-axisymmetric loads over a structural member with the principles of elasticity. A curved bar is chosen for the analysis. Tangential, radial and shear stress are determined analytically using Airy’s stress function. The curved bar is also modelled by finite element method to obtain numerical values of stress. Analytical and numerical results are in excellent agreement with each other.


2009 ◽  
Vol 25 (4) ◽  
pp. 401-409 ◽  
Author(s):  
A. Doostfatemeh ◽  
M. R. Hematiyan ◽  
S. Arghavan

ABSTRACTSome analytical formulas are presented for torsional analysis of homogeneous hollow tubes. The cross section is supposed to consist of straight and circular segments. Thicknesses of segments of the cross section can be different. The problem is formulated in terms of Prandtl's stress function. The derived approximate formulas are so simple that computations can be carried out by a simple calculator. Several examples are presented to validate the formulation. The accuracy of formulas is verified by accurate finite element method solutions. It is seen that the error of the formulation is small and the formulas can be used for analysis of thin to moderately thick-walled hollow tubes.


Sign in / Sign up

Export Citation Format

Share Document