bending effect
Recently Published Documents


TOTAL DOCUMENTS

186
(FIVE YEARS 42)

H-INDEX

17
(FIVE YEARS 3)

2021 ◽  
Vol 21 (8) ◽  
pp. 4315-4319
Author(s):  
Jintae Yu ◽  
Han Bin Yoo ◽  
Hae Sung Kim ◽  
Ji Hee Ryu ◽  
Sung-Jin Choi ◽  
...  

We report the technique of trap distribution extraction according to the vertical position of the substrate in the p-MOSFET. This study was conducted on a single device. This technique is an experimental method. Ctrap was extracted based on the deep depletion C–V characteristics. In VFB, the trap level is neutral. When bias is applied, the energy band bends, resulting in modulation of the quasi-Fermi level. The area created by the bending of the energy band is equal to the area created by the Fermi level modulation. The trap level existing in this area becomes charged. Considering this, the spatial distribution of Trap was extracted. The trap extracted by the proposed method has a maximum value at the interface, rapidly decreases, and is distributed up to 8 nm in the vertical direction. The study of trap spatial distribution is expected to be applicable to the separation of trap interface state and bulk trap extraction later.


2021 ◽  
Author(s):  
Sujay S. Pathre ◽  
Ameya M. Mathkar ◽  
Shyam Gopalakrishnan

Abstract ASME Code Section VIII Division 1 [1] provides rules for the shape of openings, size of openings, strength and design of openings, however, the existing rules do not provide any restrictions on the specific location of the nozzle on the dished head knuckle region. Many corporate guidelines/ user design requirements meant for pressure vessel design and specification suggest avoiding placement of any type of nozzle in the knuckle area of a dished head and generally state in their design specification to limit the placement of a nozzle including its reinforcement within the crown area. This applies to Torispherical and Ellipsoidal dished heads. Code [1] rule UG-37(a) provides the benefit in reinforcement by reducing the required thickness (tr) of the dished head when the nozzle is in the spherical portion of the dished head for the Ellipsoidal and Torispherical dished head. High stresses occur in the knuckle region of the dished head due to the edge bending effect caused as the cylinder and head try to deform in different directions. For various reasons the user design requirements insist on placing the nozzle in the knuckle region, further compounding the complexity of the stress pattern in the knuckle area. The work carried out in this paper was an attempt to check whether it is safe to locate a nozzle in the knuckle region of the dished head since the knuckle portion is generally subjected to higher stresses in comparison to the crown portion of a dished head and the Code [1] and [2] does not impose any restrictions for the placement of nozzles in the knuckle region. Also, in this paper an attempt was made to evaluate the induced stresses when equivalent sizes of nozzles are placed in the crown as well as the knuckle portion of the dished head.


Author(s):  
Syed Aboubakar Hassan ◽  
Binhe Wu ◽  
Xiaofeng Xu ◽  
Chunrui Wang ◽  
Jun-Cheng Cao

Author(s):  
MohammadAli Moslemi Petrudi ◽  
Mehdi Saeed Kiasat ◽  
Manouchehr Fadavi ◽  
Amin Moslemi Petrudi

Ships are always prone to fatigue through high periodic loads, usually caused by waves and changing load conditions. So, fatigue is an important factor in design. One of the reasons for fatigue in welding parts is variable bending loads. In this paper, a specimen of low-carbon steel T-Bar profiles is used, along with plates of the same type of steel that have been welded by the manual electrode welding process. To determine the distribution of static and dynamic forces created by welding, the specimens were subjected to bending (three-point loading) and tensile tests, and finally fatigue tests. The T-Bar Steel profile has more tolerance for fatigue loads than welded. The load T-Bar profile has not failed until the two million cycles, while the welding specimen has failed in about 3×105 cycles. Finally, strong penetrating welds should be used if a stronger welding joint is required.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 682
Author(s):  
Eko Surojo ◽  
Aziz Harya Gumilang ◽  
Triyono Triyono ◽  
Aditya Rio Prabowo ◽  
Eko Prasetya Budiana ◽  
...  

Underwater wet welding (UWW) combined with the shielded metal arc welding (SMAW) method has proven to be an effective way of permanently joining metals that can be performed in water. This research was conducted to determine the effect of water flow rate on the physical and mechanical properties (tensile, hardness, toughness, and bending effect) of underwater welded bead on A36 steel plate. The control variables used were a welding speed of 4 mm/s, a current of 120 A, electrode E7018 with a diameter of 4 mm, and freshwater. The results show that variations in water flow affected defects, microstructure, and mechanical properties of underwater welds. These defects include spatter, porosity, and undercut, which occur in all underwater welding results. The presence of flow and an increased flow rate causes differences in the microstructure, increased porosity on the weld metal, and undercut on the UWW specimen. An increase in water flow rate causes the acicular ferrite microstructure to appear greater, and the heat-affected zone (HAZ) will form finer grains. The best mechanical properties are achieved by welding with the highest flow rate, with a tensile strength of 534.1 MPa, 3.6% elongation, a Vickers microhardness in the HAZ area of 424 HV, and an impact strength of 1.47 J/mm2.


Sign in / Sign up

Export Citation Format

Share Document