Practical decoy-state quantum secure direct communication

2021 ◽  
Vol 64 (12) ◽  
Author(s):  
Xin Liu ◽  
Zijian Li ◽  
Di Luo ◽  
Chunfeng Huang ◽  
Di Ma ◽  
...  
2019 ◽  
Vol 34 (01) ◽  
pp. 1950004 ◽  
Author(s):  
Yuhua Sun ◽  
Lili Yan ◽  
Yan Chang ◽  
Shibin Zhang ◽  
Tingting Shao ◽  
...  

Quantum secure direct communication allows one participant to transmit secret messages to another directly without generating a shared secret key first. In most of the existing schemes, quantum secure direct communication can be achieved only when the two participants have full quantum ability. In this paper, we propose two semi-quantum secure direct communication protocols to allow restricted semi-quantum or “classical” users to participate in quantum communication. A semi-quantum user is restricted to measure, prepare, reorder and reflect quantum qubits only in the classical basis [Formula: see text]. Both protocols rely on quantum Alice to randomly prepare Bell states, perform Bell basis measurements and publish the initial Bell states, but the semi-quantum Bob only needs to measure the qubits in classical basis to obtain secret information without quantum memory. Security and qubit efficiency analysis have been given in this paper. The analysis results show that the two protocols can avoid some eavesdropping attacks and their qubit efficiency is higher than some current related quantum or semi-quantum protocols.


Sign in / Sign up

Export Citation Format

Share Document