entangled states
Recently Published Documents


TOTAL DOCUMENTS

1643
(FIVE YEARS 294)

H-INDEX

65
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Zhan-Yun Wang ◽  
Feng-Lin Wu ◽  
Zhen-Yu Peng ◽  
Si-Yuan Liu

Abstract We investigate how the correlated actions of quantum channels affect the robustness of entangled states. We consider the Bell-like state and random two-qubit pure states in the correlated depolarizing, bit flip, bit-phase flip, and phase flip channels. It is found that the robustness of two-qubit pure states can be noticeably enhanced due to the correlations between consecutive actions of these noisy channels, and the Bell-like state is always the most robust state. We also consider the robustness of three-qubit pure states in correlated noisy channels. For the correlated bit flip and phase flip channels, the result shows that although the most robust and most fragile states are locally unitary equivalent, they exhibit different robustness in different correlated channels, and the effect of channel correlations on them is also significantly different. However, for the correlated depolarizing and bit-phase flip channels, the robustness of two special three-qubit pure states is exactly the same. Moreover, compared with the random three-qubit pure states, they are neither the most robust states nor the most fragile states.


Quantum ◽  
2022 ◽  
Vol 6 ◽  
pp. 614
Author(s):  
Honghao Fu

Let p be an odd prime and let r be the smallest generator of the multiplicative group Zp∗. We show that there exists a correlation of size Θ(r2) that self-tests a maximally entangled state of local dimension p−1. The construction of the correlation uses the embedding procedure proposed by Slofstra (Forum of Mathematics, Pi. (2019)). Since there are infinitely many prime numbers whose smallest multiplicative generator is in the set {2,3,5} (D.R. Heath-Brown The Quarterly Journal of Mathematics (1986) and M. Murty The Mathematical Intelligencer (1988)), our result implies that constant-sized correlations are sufficient for self-testing of maximally entangled states with unbounded local dimension.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 611
Author(s):  
Seungbeom Chin ◽  
Yong-Su Kim ◽  
Sangmin Lee

The indistinguishability of quantum particles is widely used as a resource for the generation of entanglement. Linear quantum networks (LQNs), in which identical particles linearly evolve to arrive at multimode detectors, exploit the indistinguishability to generate various multipartite entangled states by the proper control of transformation operators. However, it is challenging to devise a suitable LQN that carries a specific entangled state or compute the possible entangled state in a given LQN as the particle and mode number increase. This research presents a mapping process of arbitrary LQNs to graphs, which provides a powerful tool for analyzing and designing LQNs to generate multipartite entanglement. We also introduce the perfect matching diagram (PM diagram), which is a refined directed graph that includes all the essential information on the entanglement generation by an LQN. The PM diagram furnishes rigorous criteria for the entanglement of an LQN and solid guidelines for designing suitable LQNs for the genuine entanglement. Based on the structure of PM diagrams, we compose LQNs for fundamental N-partite genuinely entangled states.


2021 ◽  
Author(s):  
Yong-Ting Liu ◽  
Yi-Ming Wu ◽  
Fang-Fang Du

Abstract We present a self-error-rejecting multipartite entanglement purification protocol (MEPP) for N-electron-spin entangled states, resorting to the single-side cavity-spin-coupling system. Our MEPP has a high efficiency containing two steps. One is to obtain high-fidelity N-electron-spin entangled systems with error-heralded parity-check devices (PCDs) in the same parity-mode outcome of three electron-spin pairs, as well as M-electron-spin entangled subsystems (2 ≤ M < N) in the different parity-mode outcomes of those. The other is to regain the N-electron-spin entangled systems from M-electron-spin entangled states utilizing entanglement link. Moreover, the quantum circuits of PCDs make our MEPP works faithfully, due to the practical photon-scattering deviations from the finite side leakage of the microcavity, and the limited coupling between a quantum dot and a cavity mode, converted into a failed detection in a heralded way.


2021 ◽  
Author(s):  
Kwang-Il Kim ◽  
Myong Chol Pak ◽  
Tae-Hyok Kim ◽  
Jong Chol Kim ◽  
Yong-Hae Ko ◽  
...  

Abstract We investigate robustness of bipartite and tripartite entangled states for fermionic systems in non-inertial frames, which are under noisy channels. We consider two Bell states and two Greenberger-Horne-Zeilinger (GHZ) states, which possess initially the same amount of entanglement, respectively. By using genuine multipartite (GM) concurrence, we analytically derive the equations that determine the difference between the robustness of these locally unitarily equivalent states under the amplitude-damping channel. We find that tendency of the robustness for two GHZ states evaluated by using three-tangle τ and GM concurrence as measures of genuine tripartite entanglement is equal to each other. We also find that the robustness of two Bell states is equal to each other under the depolarizing, phase damping and bit flip channels, and that the same is true for two GHZ states.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Narayani Tyagi ◽  
Ken Wharton

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yinxiang Long ◽  
Cai Zhang ◽  
Zhiwei Sun

AbstractIn this paper, a standard (3, 5)-threshold quantum secret sharing scheme is presented, in which any three of five participants can resume cooperatively the classical secret from the dealer, but one or two shares contain absolutely no information about the secret. Our scheme can be fulfilled by using the singular properties of maximally entangled 6-qubit states found by Borras. We analyze the scheme’s security by several ways, for example, intercept-and-resend attack, entangle-and-measure attack, and so on. Compared with the other standard threshold quantum secret sharing schemes, our scheme needs neither to use d-level multipartite entangled states, nor to produce shares by classical secret splitting techniques, so it is feasible to be realized.


Author(s):  
Jun Li ◽  
Lin Chen

Abstract We propose entanglement criteria for multipartite systems via symmetric informationally complete (SIC) measurement and general symmetric informationally complete (GSIC) measurement. We apply these criteria to detect entanglement of multipartite states, such as the convex of Bell states, entangled states mixed with white noise. It is shown that these criteria are stronger than some existing ones.


Author(s):  
Yajuan Zang ◽  
Paolo Facchi ◽  
Zihong Tian

Abstract Goyeneche et al.\ [Phys.\ Rev.\ A \textbf{97}, 062326 (2018)] introduced several classes of quantum combinatorial designs, namely quantum Latin squares, quantum Latin cubes, and the notion of orthogonality on them. They also showed that mutually orthogonal quantum Latin arrangements can be entangled in the same way in which quantum states are entangled. Moreover, they established a relationship between quantum combinatorial designs and a remarkable class of entangled states called $k$-uniform states, i.e., multipartite pure states such that every reduction to $k$ parties is maximally mixed. In this article, we put forward the notions of incomplete quantum Latin squares and orthogonality on them and present construction methods for mutually orthogonal quantum Latin squares and mutually orthogonal quantum Latin cubes. Furthermore, we introduce the notions of generalized mutually orthogonal quantum Latin squares and generalized mutually orthogonal quantum Latin cubes, which are equivalent to quantum orthogonal arrays of size $d^2$ and $d^3$, respectively, and thus naturally provide $2$- and $3$-uniform states.


Sign in / Sign up

Export Citation Format

Share Document